• Title/Summary/Keyword: Division Algorithm

Search Result 3,039, Processing Time 0.028 seconds

Contour Parallel Offsetting and Tool-Path Linking Algorithm For Pocketing (포켓가공을 위한 오프셋 및 공구경로 연결 알고리즘)

  • Huh Jin-Hun;Kim Young-Yil;Jun Cha-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.200-207
    • /
    • 2003
  • Presented in this paper is a new fast and robust algorithm generating NC tool path for 2D pockets with islands. The input shapes are composed of line segments and cricular arcs. The algorithm has two steps: creation of successive offset loops and linking the loops to tool path. A modified pair-wise technique is developed in order to speed up and stabilize the offset process, and the linking algorithm is focused on minimizing tool retractions and preventing thin-wall rotting The proposed algorithm has been implemented In C++ and some illustrative examples are presented to show the practical strength of the algorithm.

  • PDF

A Node Monitoring Algorithm for Efficient LDPC Decoding (효율적인 LDPC 디코딩을 위한 노드 모니터링 알고리듬)

  • Zhou, Qingsen;Yang, Shuo;Suh, Hee-Jong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.207-208
    • /
    • 2008
  • In this paper, we propose an efficient algorithm for reducing the complexity of LDPC code decoding by using node monitoring (NM). This NM algorithm is based on a new node-threshold method, and the message passing algorithm. This algorithm was simulated in order to verify its efficiency. Simulation results show that the complexity of our NM algorithm is improved to about 10%, compared with well-known methods.

  • PDF

Scheduling Algorithm for Nonidentical Parallel Machines Problem with Rework (Rework가 존재하는 이종병렬기계에서의 일정계획 수립)

  • Kang, Yong Ha;Kim, Sung Shick;Park, Jong Hyuck;Shin, Hyun Joon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.3
    • /
    • pp.329-338
    • /
    • 2007
  • This paper presents a dispatching algorithm for nonidentical parallel machines problem considering rework, sequence dependent setup times and release times. For each pair of a machine and a job type, rework probability of each job on a machine can be known through historical data acquisition. The heuristic scheduling scheme named by EDDR (Earliest Due Date with Rework probability) algorithm is proposed in this paper making use of the rework probability. The proposed dispatching algorithm is measured by two objective function value: 1) total tardiness and 2) the number of reworked jobs, respectively. The extensive computational results show that the proposed algorithm gives very efficient schedules superior to the existing dispatching algorithms.

Development of Self-Adaptive Meta-Heuristic Optimization Algorithm: Self-Adaptive Vision Correction Algorithm (자가 적응형 메타휴리스틱 최적화 알고리즘 개발: Self-Adaptive Vision Correction Algorithm)

  • Lee, Eui Hoon;Lee, Ho Min;Choi, Young Hwan;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.314-321
    • /
    • 2019
  • The Self-Adaptive Vision Correction Algorithm (SAVCA) developed in this study was suggested for improving usability by modifying four parameters (Modulation Transfer Function Rate, Astigmatic Rate, Astigmatic Factor and Compression Factor) except for Division Rate 1 and Division Rate 2 among six parameters in Vision Correction Algorithm (VCA). For verification, SAVCA was applied to two-dimensional mathematical benchmark functions (Six hump camel back / Easton and fenton) and 30-dimensional mathematical benchmark functions (Schwefel / Hyper sphere). It showed superior performance to other algorithms (Harmony Search, Water Cycle Algorithm, VCA, Genetic Algorithms with Floating-point representation, Shuffled Complex Evolution algorithm and Modified Shuffled Complex Evolution). Finally, SAVCA showed the best results in the engineering problem (speed reducer design). SAVCA, which has not been subjected to complicated parameter adjustment procedures, will be applicable in various fields.

An Efficient Integer Division Algorithm for High Speed FPGA (고속 FPGA 구현에 적합한 효율적인 정수 나눗셈 알고리즘)

  • Hong, Seung-Mo;Kim, Chong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.62-68
    • /
    • 2007
  • This paper proposes an efficient integer division algorithm for high speed FPGAs' which support built-in RAMs' and multipliers. The integer division algorithm is iterative with RAM-based LUT and multipliers, which minimizes the usage of logic fabric and connection resources. Compared with some popular division algorithms such as division by subtraction or division by multiply-subtraction, the number of iteration is much smaller, so that very low latency can be achieved with pipelined implementations. We have implemented our algorithm in the Xilinx virtex-4 FPGA with VHDL coding and have achieved 300MSPS data rate in 17bit integer division. The algorithm used less than 1/6 of logic slices, 1/4 of the built-in multiply-accumulation units, and 1/3 of the latencies compared with other popular algorithms.

A Memory-Efficient Fingerprint Verification Algorithm Using a Multi-Resolution Accumulator Array

  • Pan, Sung-Bum;Gil, Youn-Hee;Moon, Dae-Sung;Chung, Yong-Wha;Park, Chee-Hang
    • ETRI Journal
    • /
    • v.25 no.3
    • /
    • pp.179-186
    • /
    • 2003
  • Using biometrics to verify a person's identity has several advantages over the present practices of personal identification numbers (PINs) and passwords. At the same time, improvements in VLSI technology have recently led to the introduction of smart cards with 32-bit RISC processors. To gain maximum security in verification systems using biometrics, verification as well as storage of the biometric pattern must be done in the smart card. However, because of the limited resources (processing power and memory space) of the smart card, integrating biometrics into it is still an open challenge. In this paper, we propose a fingerprint verification algorithm using a multi-resolution accumulator array that can be executed in restricted environments such as the smart card. We first evaluate both the number of instructions executed and the memory requirement for each step of a typical fingerprint verification algorithm. We then develop a memory-efficient algorithm for the most memory-consuming step (alignment) using a multi-resolution accumulator array. Our experimental results show that the proposed algorithm can reduce the required memory space by a factor of 40 and can be executed in real time in resource-constrained environments without significantly degrading accuracy.

  • PDF

KOMPSAT-1 Satellite Orbit Control using GPS Data

  • Lee, Jin-Ho;Baek, Myuog-Jin;Koo, Ja-Chun;Yong, Ki-Lyuk;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.43-49
    • /
    • 2000
  • The Global Positioning System (GPS) is becoming more attractive navigation means for LEO (Low Earth Orbit) spacecraft due to the data accuracy and convenience for utilization. The anomalies such as serious variations of Dilution-Of-Precision (DOP), loss of infrequent 3-dimensional position fix, and deterioration of instantaneous accuracy of position and velocity data could be observed, which have not been appeared during the ground testing. It may cause lots of difficulty for the processing of the orbit control algorithm using the GPS data. In this paper, the characteristics of the GPS data were analyzed according to the configuration of GPS receiver such as position fix algorithm and mask angle using GPS navigation data obtained from the first Korea Multi-Purpose Satellite (KOMPSAT). The problem in orbit tracking using GPS data, including the infrequent deterioration of the accuracy, and an efficient algorithm for its countermeasures has also been introduced. The reliability and efficiency of the modified algorithm were verified by analyzing the effect of the results between algorithm simulation using KOMPSAT flight data and ground simulator.

  • PDF

A proposal to the construction of textbook contents of fraction division connected to problem context (문제 상황과 연결된 분수 나눗셈의 교과서 내용 구성 방안)

  • Shin, Joonsik
    • The Mathematical Education
    • /
    • v.52 no.2
    • /
    • pp.217-230
    • /
    • 2013
  • This study attempts to propose the construction of textbook contents of fraction division and to suggest a method to strengthen the connection among problem context, manipulation activities and symbols by proposing an algorithm of dividing fractions based on problem contexts. As showing the suitable algorithm to problem context, it is able to understand meaningfully that the algorithm of fractions division is that of multiplication of a reciprocal. It also shows how to deal with remainder in the division of fractions. The results of this study are expected to make a meaningful contribution to textbook development for primary students.

Development of an efficient sequence alignment algorithm and sequence analysis software

  • Kim, Jin;Hwang, Jae-Joon;Kim, Dong-Hoi;Saangyong Uhmn
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.264-267
    • /
    • 2003
  • Multiple sequence alignment is a useful tool to identify the relationships among protein sequences. Dynamic programming is the most widely used algorithm to obtain multiple sequence alignment with optimal cost. However dynamic programming cannot be applied to certain cost function due its drawback and to produce optimal multiple sequence alignment. We proposed sub-alignment refinement algorithm to overcome the problem of dynamic programming and impelmented this algorithm as a module of our MS Windows-based sequence alignment program.

  • PDF

Optimal Auto-tuning of Fuzzy control rules by means of Genetic Algorithm (유전자 알고리즘을 이용한 퍼지 제어규칙의 최적동조)

  • Kim, Joong-Young;Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.588-590
    • /
    • 1999
  • In this paper the design method of a fuzzy logic controller with a genetic algorithm is proposed. Fuzzy logic controller is based on linguistic descriptions(in the form of fuzzy IF-THEN rules) from human experts. The auto-tuning method is presented to automatically improve the output performance of controller utilizing the genetic algorithm. The GA algorithm estimates automatically the optimal values of scaling factors and membership function parameters of fuzzy control rules. Controllers are applied to the processes with time-delay and the DC servo motor. Computer simulations are conducted at the step input and the output performances are evaluated in the ITAE.

  • PDF