• 제목/요약/키워드: Dividing Duct

검색결과 16건 처리시간 0.02초

제철소 소결냉각용 축류송풍기 출구 덕트 형상에 따른 내부유동특성 (Internal Flow Characteristics of a Steelworks Sintering Cooler by the Duct Shape of Cooler Fan Outlet)

  • 최영도;김경훈
    • 한국유체기계학회 논문집
    • /
    • 제17권5호
    • /
    • pp.72-77
    • /
    • 2014
  • Because of overload working condition of sintering cooler, the cooler fan often suffers the break or damage of rotor blade and fixing shaft. Therefore, internal flow characteristics of a steelworks sintering cooler fan by the duct shape of the cooler fan outlet, such as duct outlet opening ratio, duct height and dividing wall shape on the duct outlet flow pattern are examined in detail. The results show that relatively short duct wall height and attachment of dividing wall shape improves flow patterns considerably.

T-TYPE 사각덕트내의 유동특성 연구 (A Study on the Flow Characteristics in T-type Rectangular Duct)

  • 이행남;박길문;이덕구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.702-707
    • /
    • 2001
  • The characteristics of flow in dividing regions are precise, therefore their classification is very important not only in industry but also in hydrodynamics. By now, many studies of flow in dividing regions have been performed, but flow characteristics that use visualization in dividing regions have not been studied. The present study of the PIV and the CFD exhibit average velocity distributions, kinetic energy distributions and total pressure distributions etc of the total flow field due to the development of the accurate visualization optical laser and of optical equipment. Also, PIV is accurate with the flows characteristics of the dividing region as continuous analysis is done using input equipment. The study analyzes average velocity vector field, average kinetic energy, x-axis stress distributions, average and total pressure distributions of dividing regions with flow for visualization of the PIV and the CFD measurement in a dividing rectangular duct.

  • PDF

90$^{\circ}$분기덕트에서 분기부의 내 .외벽의 속도분포 (The Velocity distributions of Dividing Region to Internal Wall and External Wall in 90$^{\circ}$ Dividing Duct)

  • 이행남;박길문;손현철;이덕구;이종구;김대욱
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.35-39
    • /
    • 2002
  • The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean vorticity and total pressure distributions are obtained for three different Reynolds numbers(578, 620, 688) using PIV measurements and CFD analysis. Also, dividing duct $90^{\circ}$ were selected for study. The results of this study would be useful to the engineer in designing the flow systems for heating, ventilation, air conditioning and wastewater purification plants.

  • PDF

분지덕트 내의 유동특성 (The Flow Characteristics in Dividing Ducts)

  • 이행남;박길문;이덕구
    • 한국유체기계학회 논문집
    • /
    • 제5권4호
    • /
    • pp.19-25
    • /
    • 2002
  • The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean vorticity, and total pressure distributions are obtained for three different Reynolds numbers (578, 620, 688) using PIV measurements and CFD analysis. Also, two different dividing ducts ($90^{\circ},\;60^{\circ}$) were selected for study. The results of this study would be useful to the engineers designing flow systems for heating, ventilation, air conditioning and waste-water purification plants.

PIV기법을 이용한 분기 사각덕트네의 유동특성에 관한 실험적 연구 (An Experimental Study on the Flew Characteristics in Dividing Rectangular Duet by using a PIV Technique)

  • 이행남;박길문;이덕구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1195-1202
    • /
    • 2001
  • The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean x-y stress distributions, mean vorticity and total pressure distributions are Obtained for three different Reynolds numbers(578, 620, 688) Using PIV measurements and CFD analysis. Also, three different rates of discharge Q=26.11 l/min, Q=28.11 $\ell$/min, Q=31.17 $\ell$/min) were selected foy experimental conditions. The results of this study would be useful to the engineer in designing the flow systems for heating, ventilation, air conditioning and wastewater purification plants.

  • PDF

곡관덕트에 연결된 정사각단면 직관덕트에서 증류정상유동의 유동장내 유동특성 (Flow Characteristics of Developing Laminar Steady Flows in a Straight Duct Connected to a Square Curved Duct)

  • 손현철
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.545-553
    • /
    • 2005
  • In the present study, The characteristics of developing steady laminar flows of a straight duct connected to a $180^{\circ}$ curved duct were examined In the entrance region through experimental measurement. Flow characteristics such as shear stress distributions, pressure distributions and friction coefficient experimentally in a square cross-sectional straight duct by using the PIV system. For the PIV measurement by particles produced from mosquito coils particles. The experimental data were obtained at 9 points dividing the test sections by 400mm. Experimental results can be summarized as follows. Critical Reynolds number, $Re_{cr}$ which indicates transition from laminar steady flow to transition steady flow was 2,150. Shear stress per unit length on the wall was stronger than that in the fully developed flow region. This was attributed to the fact that shear stress and pressure loss in the curvature of a duct were increased. Pressure distributions were gradually decreased irrespective of Reynolds number In the whole test section. This trends were in a good agreement with the reference results. Pipe friction coefficient in the steady state flow region was calculate from method of least squares. The co-relationship between fiction coefficient and Reynolds number was established as follow; ${\lambda}=56/Re$.

정사각단면 곡관덕트에 연결된 직관덕트에서 층류유동의 속도분포 (A Study on the Axial Velocity Profile of Developing Laminar Flows in a Straight Duct Connected to a Square Curved Duct)

  • 손현철;이행남;박길문;이홍구
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1058-1065
    • /
    • 2004
  • In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180$^{\circ}$ curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles, and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code(STAR CD). For the PIV measurement, working fluid produced from mosquito coils smoke. The experimental data were obtained at 9 points dividing the test sections by 400 mm. Experimental and numerical results can be summarized as follows. Critical Reynolds number, Recr which indicates transition from laminar steady flow to transition steady flow was 2,150. As Reynolds number, Re, was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and the secondary flows. The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number.

CRW 비행체 덕트 시스템 설계를 위한 CFD의 활용 (The Application of CFD for the Duct System Design of CRW aircraft)

  • 정용운;전용민;양수석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.200-205
    • /
    • 2003
  • The Canard rotor/wing (CRW) aircraft concepts offer great potential for application by allowing the use of a common propulsion system for high-speed cruise and low-speed powered lift. Using the rotor for lift in both flight modes increases its utility. In the hovering mode, the exhausted gas from an gas turbine engine is accelerated through the duct system and it provides the tipjet power for rotor system enough to lift the aircraft. In the cruise mode, the rotor is fixed and the exhausted gas is extracted through the main nozzle, such that the aircraft is able to flight with high speed. The duct system was designed using 1-D fanno line flow theory and empirical data. However, the empirical data of the pressure loss coefficient for various bending and dividing ducts were not enough to design our duct system adaptively. Therefore, using 3-D CFD analysis we obtained the pressure loss coefficient for our duct models and chose the appropriate bending or diving duct type. In this paper, we used the CFD-ACE+ software package for the CFD analysis and the modeling of duct system. Through the 3-D CFD analysis, we investigated also the pressure loss and the velocity distributions of the designed whole duct system as well as the blade duct. Comparing the 3-D CFD result with 1-D analysis result, we lessened the uncertainty of the designed duct system and speculated the problem that was not concerned in design state.

  • PDF

180° 곡관덕트의 출구영역에 연결된 직관덕트에서 층류유동의 속도분포와 2차유동 (Axial Velocity Profiles and Secondary Flows of Developing Laminar Flows in a Straight Connected Exit Region of a 180° Square Curved Duct)

  • 손현철;이행남;박길문
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1092-1100
    • /
    • 2005
  • In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180$^{o}$ curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code(STAR CD). For the PIV measurement, smoke particles produced from mosquito coils. The experimental data were obtained at 9 points dividing the test sections by 400 3m. Experimental and numerical results can be summarized as follows. 1) Reynolds number, Re was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and secondary flows. 2) The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number. Especially, fluid dynamic phenomenon called conner impact were observed at dimensionless axial position, x/D$_{h}$=50.

CFD를 이용한 덕트 프로펠러 단독 상태에서의 추진 성능 예측 (PROPULSIVE PERFORMANCE PREDICTION OF A DUCTED PROPELLER IN OPEN WATER CONDITION USING CFD)

  • 이경언;진두화;이상욱
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, a numerical prediction on propulsive performance of a ducted propeller in open water condition was carried out by solving Reynolds averaged Navier-Stokes(RANS) equation using computational fluid dynamics(CFD). A configuration of propeller Ka-470 inside duct 19A was considered. Hexahedral grid system was generated by dividing whole computational domain into three separate regions; propeller, duct and outer flow region. A commercial CFD software, ANSYS-CFX was used for numerical simulations. Results were compared with experimental data and showed considerable improvement in accuracy, in comparison to those from surface panel method which is based on potential flow assumption. The results also exhibited the importance of grid system within the gap between the inner surface of duct and blade tip for accurate prediction of propulsive performance of ducted propeller.