• Title/Summary/Keyword: Divided wall column

Search Result 18, Processing Time 0.023 seconds

STUDY OF INTERNAL RECYCLE DISTRIBUTION AND HEAT TRANSFER EFFECT FOR OPTIMAL DESIGN OF DIVIDING WALL DISTILLATION COLUMNS

  • Lee, Ki-Hong;Lee, Moon-Yong;Jeong, Seong-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2319-2324
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved method is suggested to utilize the heat transfer through the wall to optimal column design. The suggested method is compared with the existing method via. simulation study and shows more improved energy saving result. Several control strategies for the divided wall column are tested and the optimal control strategy is propose

  • PDF

Design of High-Efficient Divided Wall Distillation Columns for Propane and Butane Separation (프로판과 부탄 분리를 위한 고효율 분리벽형 증류탑 설계)

  • KIM, NAMGEUN;RYU, HYUNWOOK;KANG, SUNGOH;OH, MIN;LEE, CHANGHA
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.1
    • /
    • pp.83-94
    • /
    • 2019
  • LPG is increasingly being used as a clean energy source due to the continuous strengthening of environmental regulations. In addition, the demand of propane which is the basic compound for petrochemicals is increasing for propylene production. In the study, a divided wall column was used as de-propanizer and de-butanizer, which is expected to save large amount of energy among the four conventional distillation columns used for processing LPG. The simulation results showed a decrease of energy duty with ESI by 30.30% using two divided wall columns. Furthermore, simulation case studies were carried out with respect to design and operation condition. The main column tray and withdrawal tray were determined from the design case studies while the internal liquid flow and vapor flow were decided from the operating case studies. Also, ESI of 1.06% could be achieved from the case studies. According to the results, the simulation method used showed that it is greatly helpful to the design and evaluate a highly efficient divided wall column.

Application of a Divided-Wall Column for the Trichlorosilane Refining Process (삼염화실란 정제공정에서의 분리벽형 증류탑 적용)

  • Hong, Seung-Taek;Lee, Moon-Yong
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • In this study, we suggest the application of the divided-wall column (DWC) to the existing trichlorosilane(TCS) purification process in the commercial polysilicon manufacturing process. Using Aspen HYSYS V7.1, an extensive simulation study was carried out for the analysis of the energy consumptions and capital cost for the conventional sequential distillation configuration and the DWC for producing a given purity and yield of trichlorosilane. As a result, it is shown that the DWC saves the separation energy by 61% and the equipment cost by 58% compared with the conventional distillation process.

A Study on the Change of Free Surface Vortex according to Intake Conditions in the Pump Sump (펌프 섬프장 흡입 조건에 따른 자유표면 보텍스 변동에 관한 연구)

  • Park, Young-Kyu;Li, Kui-Ming;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.74-79
    • /
    • 2011
  • In this study the change of free surface vortex is represented at different times according to height of water and with or without curtain wall installation. The air volume fraction is investigated at each condition of water level and the influence about creation of vortex is analyzed. The height of sump intake is taken as 100mm and the water level is divided into 5 steps. The sump model is the TSJ model and the curtain wall is applied by HI standard of America. The results shows that the free surface vortex can be identified on the isotropic surface at air volume fraction 1%~5% and the vortices make an air column from the free surface to the sump intake and are created and destroyed repeatedly. In the higher water level, less air is absorbed into the intake pipe. After curtain wall installation, the suction rate of the air volume fraction is decreased by 6.7%. The result of the vortex motion according to time, works on a cycle.

Design of Thermally Coupled Distillation Process Utilizing Existing Columns (기존 증류탑을 이용한 열복합 증류공정의 설계)

  • Lee, Moon Yong;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1017-1022
    • /
    • 2008
  • Though many divided wall columns are implemented in field as energy-efficient distillation columns, its application is limited due to the difficulty of building a new column. A novel energy-efficient distillation system utilizing the existing columns is proposed here. The proposed can reduce the energy consumption by about 39% comparing with the existing system. And it is shown that the proposed improves the column operability over the existing. The tray numbers of the added columns have no significant influence on the composition of a side draw.

A Study on the Plane Type of House in Unified Silla Period - Focused on the Capital Remains of Silla in Gyeongju - (통일신라시대 주택의 평면유형 분석 - 경주 신라왕경 발굴유구를 중심으로 -)

  • Lee, Jeong-Mee
    • Journal of the Korean housing association
    • /
    • v.26 no.6
    • /
    • pp.139-146
    • /
    • 2015
  • In this study, the plane type of main building relics of unified Silla period house site which excavated in Gyeongju city after 1990s was classified and the architectural characteristic of them was investigated. The chronology of building relics in Silla capital city site was mostly known as 8-9th century, and by standard of column arrangement, the plane types of them could be classified as grid type, front veranda-grid type, outer column type. The outstanding characteristic of plane is wide span and open front veranda. In most relics the span were over 4 meters, and inner foundations for small post and strip foundation were found between columns. The front veranda added type buildings were composited of enclosed main room and open front veranda, and column arrangement of them dose not fall into line in most case. Thus it thought that the structures of enclosed main room and open front veranda were independent. The interior space of enclosed main room were divided two rooms by partition wall in some case. In this case, one room is enclosed by wall, and the other room has open front side. This plane is considered for the pleasant life in cold winter and hot summer.

Nonlinear Dynamic Response Characteristics with Variations in the Lower Stories of Mixed Building Structures (복합구조물의 하부층수 변화에 따른 비선형 동적응답특성)

  • 강병두;전대한;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.443-450
    • /
    • 2001
  • The Mixed building structures can be divided into three partition, namely, upper wall, lower frame, and transfer system which link two partitions. The purpose of this study is to investigate the nonlinear response characteristics of structures, as the stories of lower frame of mixed building structures changes. The recorded earthquake ground motions of EI Centro 1940 NS is adopted, and the maximum ground accelerations are adjusted to 55ga1, 110ga1, 220ga1, 330ga1. The conclusions of this study are the following. 1) The responses of model that the story of lower frame is one were different from those of other models. 2) The process of ductility hinge occurrence of member was ends of coupling beam of upper wall and ends of beam of lower frame in 55ga1, bases of shear wall on pit floor in 110ga1, and bases of column of 1F in 220ga1.

  • PDF

Test on the anchoring components of steel shear keys in precast shear walls

  • Shen, Shao-Dong;Pan, Peng;Li, Wen-Feng;Miao, Qi-Song;Gong, Run-Hua
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.783-791
    • /
    • 2019
  • Prefabricated reinforced-concrete shear walls are used extensively in building structures because they are convenient to construct and environmentally sustainable. To make large walls easier to transport, they are divided into smaller segments and then assembled at the construction site using a variety of connection methods. The present paper proposes a precast shear wall assembled using steel shear keys, wherein the shear keys are fixed on the embedded steel plates of adjacent wall segments by combined plug and fillet welding. The anchoring strength of shear keys is known to affect the mechanical properties of the wall segments. Loading tests were therefore performed to observe the behavior of precast shear wall specimens with different anchoring components for shear keys. The specimen with insufficient strength of anchoring components was found to have reduced stiffness and lateral resistance. Conversely, an extremely high anchoring strength led to a short-column effect at the base of the wall segments and low deformation ability. Finally, for practical engineering purposes, a design approach involving the safety coefficient of anchoring components for steel shear keys is suggested.

Development of Stiffness Estimation Algorithm for Nonlinear Static Analysis of Bilinear Material Model (전단벽 모형화 방법에 따른 구조해석 신뢰성에 대한 고찰)

  • Jung, Sung-Jin;Park, Se-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.718-723
    • /
    • 2017
  • When structural analysis modelling methods of practical fields are investigated, a slab is generally modeled by a finite element mesh using plate elements and a shear wall is modeled using a shell element or wall element for 3-D structural analysis. The point worthy of notice in this practice is that a shear wall is modelled using only one wall or shell element divided by floors and column lines to produce structural models. The modeling method like this can cause analysis errors according to the type of computer programs in use, and these errors reduce the reliability of the analysis results. Therefore, to secure the reliability of structural analysis, studies of the causes of errors and finding reasonable modeling methods are necessary. In this study, the causes of analysis errors according to the modelling methods of a shear wall, which are used in practical fields, were investigated and some considering matters for modelling a shear wall are presented to reduce the analysis errors on these analysis results.

Energy Conservation and Exergy Comparison of a Fully Thermally Coupled Distillation Column (열복합 증류탑의 에너지 절감과 엑서지 비교)

  • Kim, Byoung Chul;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • The energy conservation and exergy loss of a fully thermally coupled distillation commercialized as the divided wall column are compared with those of a conventional two-column system for ternary separation. The used example for the comparison is the benzene-toluene-m-xylene separation process widely used in a petrochemical plant. The design procedure of the fully thermally coupled distillation column is explained, and the energy requirement is compared using the HYSYS. When the same numbers of trays are utilized, the fully thermally coupled distillation column uses 28.2% less energy and 10.4% more exergy loss. The increase of the exergy loss is due to the additional mixing from the bidirectional inter-linking and the temperature elevation in the reboiler from the increased pressure at the bottom of the main column.