Korean Journal of Computational Design and Engineering
/
v.14
no.4
/
pp.217-224
/
2009
Most divide-and-conquer implementations for Delaunay triangulation utilize quad-edge or winged-edge data structure since triangles are frequently deleted and created during the merge process. How-ever, the proposed divide-and-conquer algorithm utilizes the array based data structure that is much simpler than the quad-edge data structure and requires less memory allocation. The proposed algorithm has two important features. Firstly, the information of space partitioning is represented as a permutation vector sequence in a vertices array, thus no additional data is required for the space partitioning. The permutation vector represents adaptively divided regions in two dimensions. The two-dimensional partitioning of the space is more efficient than one-dimensional partitioning in the merge process. Secondly, there is no deletion of edge in merge process and thus no bookkeeping of complex intermediate state for topology change is necessary. The algorithm is described in a compact manner with the proposed data structures and operators so that it can be easily implemented with computational efficiency.
Journal of the Korea Society of Computer and Information
/
v.20
no.12
/
pp.101-106
/
2015
This paper suggests heuristic algorithm with polynomial time complexity for rigging elections problem that can be obtain the optimal solution using linear programming. The proposed algorithm transforms the given problem into adjacency graph. Then, we divide vertices V into two set W and D. The set W contains majority distinct and the set D contains minority area. This algorithm applies divide-and-conquer method that the minority area D is include into majority distinct W. While this algorithm using simple rule, that can be obtains the optimal solution equal to linear programing for experimental data. This paper shows polynomial time solution finding rule potential in rigging elections problem.
By estimating conditional quantile functions of the response, quantile regression (QR) can provide comprehensive information of the relationship between the response and the predictors. In addition, kernel quantile regression (KQR) estimates a nonlinear conditional quantile function in reproducing kernel Hilbert spaces generated by a positive definite kernel function. However, it is infeasible to use the KQR in analysing a massive data due to the limitations of computer primary memory. We propose a divide and conquer based KQR (DC-KQR) method to overcome such a limitation. The proposed DC-KQR divides the entire data into a few subsets, then applies the KQR onto each subsets and derives a final estimator by aggregating all results from subsets. Simulation studies are presented to demonstrate the satisfactory performance of the proposed method.
Journal of the Korean Institute of Telematics and Electronics A
/
v.30A
no.3
/
pp.104-113
/
1993
A new switchbox router, called CONQUEROR, is proposed in this paper. The proposed CONQUEROR efficiently routes large switchbox routing area using divide-and-conquer technique. The CONQUEROR consists of three phases` namely, partition of large routing area and assignment of optimal pins of sub-area, detailed routing of each sub-ared, reassignment of pins after rip-up. First, large switchbox routing area is partitioned into several sub-areas and each sub-area contains 4-6 detailed grids. Then pins are assigned on boundary of sub-area by the estimated weight. Secondly, when global pin assignment is completed on all sub-areas, each sub-area is routed using detailed router. Also, detailed routing consists of three pases` layerless maze routing, assignment of layer using coloring, and rip-up and reroute. Lastly, if detailed routing of any sub-area fails,reassignment of pins after rip-up is invoked. Detailed routing is performed for the failed sub-area again. Benchmark test cases have been run, and on all the benchmark data known in the literature CONQUEROR has performed as well as or better than existing switchbox routers.
This paper proposes a new stereo matching algorithm using both the divide-and-conquer method and the DSI(Disparity Space Image) technique. Firstly, we find salient feature points on the each scanline of the left image and find the corresponding feature point at the right image. Then the problem of a scanline is divided into several subproblems. By this way, matching of the subintervals is implemented by using the DSI technique. The DSI technique for stereo matching process is a very efficient solution to find matches and occlusions simultaneously and it is very speedy. In addition, we apply three occluding patterns to process occluded regions, as a result, we reduce mismatches at the disparity discontinuity.
본 논문은 음운 및 음향학적인 정보를 최대한 이용하고 분할에러를 줄이기 위해서 조절 메카니즘의 하나로 DAC(Divide And Conquer)개념을 사용하여 음성을 speechlet으로 나누고(signal localization) 나누어진 음성구간에 대해서 레이블링을 시도(case study)하는 DAC기반 분할알고리즘을 제안한다. HMM과 같은 통계학적인 방법을 이용하지 않고 음운학적, 음향학적 지식만을 이용하는 신뢰할 수 있는 분할 알고리즘이며 대용량 음성DB에 대한 레이블링 작업을 단시간에 수행할 수 있고 일관성이 있으며 효과적인 음성엔진 구현 및 음성합성, 화자인증에도 이용 가치가 높다.
Quantile regression is widely used in many fields based on the advantage of providing an efficient tool for examining complex information latent in variables. However, modern large-scale and high-dimensional data makes it very difficult to estimate the quantile regression model due to limitations in terms of computation time and storage space. Divide-and-conquer is a technique that divide the entire data into several sub-datasets that are easy to calculate and then reconstruct the estimates of the entire data using only the summary statistics in each sub-datasets. In this paper, we studied on a variable selection method using Bayes information criteria by applying the divide-and-conquer technique to the penalized quantile regression. When the number of sub-datasets is properly selected, the proposed method is efficient in terms of computational speed, providing consistent results in terms of variable selection as long as classical quantile regression estimates calculated with the entire data. The advantages of the proposed method were confirmed through simulation data and real data analysis.
Multidimensional scaling (MDS) is a widely used method for dimensionality reduction, of which purpose is to represent high-dimensional data in a low-dimensional space while preserving distances among objects as much as possible. MDS has mainly been applied to data visualization and feature selection. Among various MDS methods, the classical MDS is not readily applicable to data which has large numbers of objects, on normal desktop computers due to its computational complexity. More precisely, it needs to solve eigenpair problems on dissimilarity matrices based on Euclidean distance. Thus, running time and required memory of the classical MDS highly increase as n (the number of objects) grows up, restricting its use in large-scale domains. In this paper, we propose an efficient approximation algorithm for the classical MDS based on divide-and-conquer and CUDA. Through a set of experiments, we show that our approach is highly efficient and effective for analysis and visualization of data consisting of several thousands of objects.
The ability to recognize human emotions by computer vision is a very important task, with many potential applications. Therefore the demand for emotion recognition using not only RGB images but also thermal images is increasing. Compared to RGB images, thermal images has the advantage of being less affected by lighting conditions but require a more sophisticated recognition method with low-resolution sources. In this paper, we propose a Divide and Conquer-based CNN training strategy to improve the performance of facial thermal image-based emotion recognition. The proposed method first trains to classify difficult-to-classify similar emotion classes into the same class group by confusion matrix analysis and then divides and solves the problem so that the emotion group classified into the same class group is recognized again as actual emotions. In experiments, the proposed method has improved accuracy in all the tests than when recognizing all the presented emotions with a single CNN model.
Aiming at infrared thermal images with different buried depth defects, we study a variety of image segmentation algorithms based on the threshold to develop global search ability and the ability to find the defect area accurately. Firstly, the iterative thresholding method, the maximum entropy method, the minimum error method, the Ostu method and the minimum skewness method are applied to image segmentation of the same infrared thermal image. The study shows that the maximum entropy method and the minimum error method have strong global search capability and can simultaneously extract defects at different depths. However none of these five methods can accurately calculate the defect area at different depths. In order to solve this problem, we put forward a strategy of "divide and conquer". The infrared thermal image is divided into several local thermal maps, with each map containing only one defect, and the defect area is calculated after local image processing of the different buried defects one by one. The results show that, under the "divide and conquer" strategy, the iterative threshold method and the Ostu method have the advantage of high precision and can accurately extract the area of different defects at different depths, with an error of less than 5%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.