• Title/Summary/Keyword: Divert and Attitude Control System

Search Result 13, Processing Time 0.031 seconds

Research Trends in Propulsion Technology for Divert and Attitude Control System (연속가변 추력제어 추진기술 연구동향)

  • Ha, Dongsung;Lim, Seongtaek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.353-357
    • /
    • 2017
  • The research trends and major technologies of the divert attitude control system(DACS), which is the core of the anti-missile system, are described. The operating concept and characteristics according to the fuel used are summarized. The characteristics of typical weapon system applying solid(SM3 Block IB/IIA) and liquid(THAAD) fuels were discussed. In the future, it will be necessary to study various types of DACS in the strategic concept of the defense weapon system.

  • PDF

Nonlinear Acceleration Controller Design for DACS Type Kill Vehicle (DACS형 직격요격비행체의 비선형 가속도 조종루프 설계)

  • Lee, Chang-Hun;Kim, Tae-Hun;Jun, Byung-Eul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.54-64
    • /
    • 2015
  • This paper deals with an acceleration controller design for a kill vehicle equipped with a divert and attitude control system (DACS). In the proposed method, the attitude control system (ACS) is used to produce the thrust command to nullify angle-of-attack. For the angle-of-attack control, a nonlinear angle-of-attack controller is proposed based on the feedback linearization methodology. Since the flight path angle is identical to the attitude angle under the condition of zero angle-of-attack, the divert control system (DCS) can directly produce the lateral acceleration which is demanded from the guidance loop. In the proposed method, we can minimize the aerodynamic uncertainty due to the propulsive force. Additionally, we can simplify the operation logic of DCS and ACS. In this paper, nonlinear simulations are performed to show the performance of the proposed method.

Recent Progress in R&D and Prospect of Divert and Attitude Control System(DACS) (궤도천이 및 자세제어 시스템의 연구개발 동향과 전망)

  • Kim, Seongsu;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.62-72
    • /
    • 2012
  • Divert and attitude control system(DACS) plays an important role for orbit transfer and attitude control, and therefore becomes important subject for recent space vehicle and Precision Guided Missile(PGM) development. To develop DACS system, main research areas include shape combination of pintle and nozzle to maximize thrust change, and reduction of aerodynamic pintle load to minimizle pintle driving force, and development of multi-axis control algorithm. In this paper, introduction, classification, and overseas/domestic research and development program, and prospects of DACS are reviewed and summarized.

High-Altitude Terminal Guidance and Control Loop Design Using Thrust Vector Control (추력벡터제어를 이용한 고고도 종말 유도조종 루프 설계)

  • Jeon, Ha-Min;Park, Jongho;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.393-400
    • /
    • 2022
  • The Divert and Attitude Control System(DACS) used in high-altitude engagements is expensive and complex. In this paper, we design a high-altitude terminal guidance and control loop of guided-missile equipped with a Thrust Vector Control(TVC) that is less expensive and simpler than DACS. The proposed system utilizes a quaternion feedback control technique to track the thrust attitude command converted from the acceleration command of true proportional navigation guidance. The performance analysis of the proposed terminal guidance and control loop is conducted through engagement simulations against ballistic targets at a high altitude.

Pressure Guidance and Thrust Allocation Law of Solid DACS (고체 추진 DACS의 압력 유도 및 추력 분배기법)

  • Park, Iksoo;Hong, Seokhyun;Ki, Taeseok;Park, Jungwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • The control law for simultaneous pressure and thrust control of solid DACS(Divert Attitude Control System) is suggested. To regulate the two variables effectively, the control structure of sequential loop closer is applied to the system considering the physical characteristics of each variable and the weighted pseudo-inverse method is suggested to allocate effective command for indeterminate system. Also, the pressure guidance law for safe and high acceleration is applied to the homing stage to verify the effectiveness of the command distribution.

Development of Thruster for Divert Control System (궤도 수정용 추력발생장치 개발)

  • Jeon, Young-Jin;Baek, Ki-Bong;Lim, Seol;Suh, Suhk-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.364-367
    • /
    • 2011
  • The development of the DCS thrust unit during the attitude control thruster of the launch vehicle and guided missile is introduced. The DCS thrust unit using solid propellants based on a two-axis control is designed and through the thermo-structural and flow analysis is designed in detail. The performance of the thrust unit based on the detail design is demonstrated through a combustion test.

  • PDF

A Study on Inspecting Position Accuracy of DACS Pintle (위치자세제어장치의 핀틀 위치정확도 점검 방안 연구)

  • Tak, Jun Mo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.57-64
    • /
    • 2021
  • In the study, to minimize the error on guided control of the KV (Kill Vehicle) and to secure the hit-to-kill performance, a position accuracy inspection for the DACS (Divert and Attitude Control System) actuation system was proposed. The accuracy performance of the DACS actuation system is one of the most important factors in the interception of ballistic missiles. In order to validate actuation control accuracy of DACS system, an inspection item was set for position accuracy, and the inspection system was designed for DACS pintle. To measure the absolute position value of the DACS pintle, an external measurement system was developed using laser displacement sensors. The inspection system was designed so that it can be compared with the actuation command in real time. The proposed position accuracy inspection system can be inspected not only in a DACS system but also in missile system level. The position accuracy inspection was performed using the designed inspection system, and analysis of the inspection result.

Design of Cold-flow Test Equipment Considering Dynamic Similarity for DACS Verification (동적상사를 고려한 DACS 검증용 공압 시험장치 설계)

  • Bae, Sangho;Chang, Hongbeen;Park, Iksoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.374-377
    • /
    • 2017
  • A cold-flow test equipment was designed to carry out the performance verification of TDACS. For that purpose, the pressure dynamics in the solid rocket motor combustor and the cold-flow test was modeled, and the response time showing the dynamic characteristics of each model was obtained. In this paper, the system response time of the cold-flow test was designed to be equal to that of the motor, making the dynamic response in cold-flow and hot gas condition to be similar.

  • PDF

A Review on the DACS Design from the Perspective of Flight Performance Requirements (비행성능 요구 관점에서 DACS 형상 설계에 관한 고찰)

  • Park, Iksoo;Jin, Jungkun;Ha, Dongsung;Lim, Seongtaek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.358-363
    • /
    • 2017
  • The high intercept probability depends on optimization of the system, which consists of target detection, tracking system, missile system and so on. To reduce the complexity of global optimization of the system performance, simplification of the relative dependances of each sub-system is done and design parameters for DACS configuration are identified. The conceptual design process is addressed based on the requirement of the design parameters and new methodology is suggested for higher performance.

  • PDF

Research for Thrust Distribution Method of DACS for Response to Pintle Actuating Failure (DACS 추진기관의 핀틀 구동장치 고장을 허용하는 추력 분배기법 연구)

  • Ki, Taeseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.61-70
    • /
    • 2017
  • Robust thrust distribution method of solid DACS is researched. For the case of the system which has higher number of actuation nozzles than the degree of freedom of thrust to be controlled, the robust thrust allocation law which accommodate the abnormal operation is suggested. Assuming the situation that some nozzles are uncontrollable, the error between nozzle throat area command and response can be calculated. The error is used for realtime reshaping of weighting matrix. From the weighting effect, the nozzle which operated abnormally has low responsibility for the command then, the thrust error is reduced. The suggested algorithm is verified by the simulation of abnormal operation condition of DCS and ACS nozzle respectively.