• Title/Summary/Keyword: Diversity Channel

Search Result 738, Processing Time 0.031 seconds

Study on the Diversity Method to Improve the Performance of the CDMA System in the Mobile Wireless Channel

  • Lee Kwan-Houng
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2005
  • This study proposes a new diversity algorithm to improve the signal-to-noise ratio. In the wireless channel, if fading occurs due to the multipaths, the performance of the system is apparently reduced. One of the methods to reduce fadings like this is the diversity method, and this study aims to improve the performance of the system by proposing a new diversity algorithm. This study applied rake receiver, and normalized the wireless channel from the Nakagami fading channel to the Rayleigh fading channel, which set the fading index as 1, because of the multipaths. It applied QPSK and OQPSK modulation methods and applied the convolutional codes, where the code rate is 1/2 and 1/3 and the constraint length is 9, and the turbo code where the constraint length is 4. Under these conditions, this study compared and analyzed the average error probability of direct spread multiple access system. The diversity algorithm proposed in this paper could be applied to the mobile communication and other wireless multimedia communications that require high quality and high reliability.

Evolutionary Algorithm-based Space Diversity for Imperfect Channel Estimation

  • Ghadiri, Zienab Pouladmast;El-Saleh, Ayman A.;Vetharatnam, Gobi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1588-1603
    • /
    • 2014
  • In space diversity combining, conventional methods such as maximal ratio combining (MRC), equal gain combining (EGC) and selection combining (SC) are commonly used to improve the output signal-to-noise ratio (SNR) provided that the channel is perfectly estimated at the receiver. However, in practice, channel estimation is often imperfect and this indeed deteriorates the system performance. In this paper, diversity combining techniques based on two evolutionary algorithms, namely genetic algorithm (GA) and particle swarm optimization (PSO) are proposed and compared. Numerical results indicate that the proposed methods outperform the conventional MRC, EGC and SC methods when the channel estimation is imperfect while it shows similar performance as that of MRC when the channel is perfectly estimated.

Performance of Closed-loop Transmit Antenna Diversity System with Sub-optimal Beam-forming and Fading Corrrelation (준 최적 빔 형성과 페이딩 상관을 갖는 송신 안테나 다이버시티 시스템의 성능)

  • Kim, Nam-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.1-7
    • /
    • 2004
  • The effect of the sub-optimal beam-forming and the fading channel correlation on the closed loop transmit antenna diversity(CTD) system is investigated in frequency flat Rayleigh fading channels. The fast channel fading prevents the perfect channel estimation at a mobile station, hence the imperfect weight is applied to the antenna branch of transmitter. The weight causes sub-optimalbeam-forming and aggravates the performance of CTD system. The fading correlation or a wireless channel also is one of the factors decreasing the diversity gain. A bit error rate expression for the CTD system is analytically derived as a function of the channel estimation error, the channel correlation coefficient the feedback delay, and fading index. It is shown that the channel estimation error gives more severe effect to the system performance than the channel correlation.

Performance of cellular hybrid DS/FH spread spectrum systems with diversity on nakagami fading channel (나카가미 페이딩 채널하에서 다이버시티를 갖는 셀룰러 하이브리드 DS/FH 확산대역 시스팀의 성능)

  • 조현욱;박상규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.10-21
    • /
    • 1998
  • In this paper, we analyze the anynchrous cellular hybrid DS/FH spread spectrum system with diversity on nonselective Nakagami fading channel. Binary Psk scheme is considered and random spreading code sequences and random hopping patterns are used. We compare the performance of system using hard-limiting correlation receiver with diversity and linear corrleation receiver in Nakagami fading channel. We compute the average bit error probabilities with/without diversity according to spreading code sequence and the number of hop-ping frequencies under the same handwith espansion, and analyze near-far effect. The results show that hard-limiting correlation receiver with diversity gives a good performance over severe fading channel.

  • PDF

Performance Analysis of 32-QAPM System with MRC Diversity in Rician Fading Channel

  • Chun, Jae Young;Kim, Eon Gon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.227-232
    • /
    • 2016
  • In this study, the performance of a 32-quadrature amplitude position modulation (QAPM) system is analyzed under a Rician fading channel condition when the maximal ratio combining (MRC) diversity technique is used in the receiver. The fading channel is modeled as a frequency non-selective slow Rician fading channel corrupted by additive white Gaussian noise (AWGN). QAPM is available to improve BER performance without amplifying transmit power, and MRC diversity makes the performance improvement of QAPM system even bigger by intentionally maximizing SNR. Error performances are shown for the 32-QAPM system and a 32-phase silence shift keying (PSSK) system in order to examine the effects of fading severity, for various values of the Rician parameter, K. The dependence of error rates on MRC diversity is also analyzed. The simulation results show that the BER performance of the 32-QAPM system is better than that of the 32-PSSK system under the above mentioned conditions.

A New Diversity Combining Scheme Based on Interleaving Method for Time-of-arrival Estimation of Chirp Signal

  • Jang, Seong-Hyun;Chong, Jong-Wha
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.153-158
    • /
    • 2012
  • A new diversity combining scheme is proposed for time-of-arrival (TOA) estimation of chirp signal in dense multipath channel. In the multipath channel, the performance of TOA estimation using conventional correlation matrix-based diversity combining scheme is degraded due to the lack of de-correlation effect. To increase the de-correlation effect, the proposed diversity scheme employs interleaving method based on the property of de-chirped signal. As a result, the proposed scheme increases de-correlation effect and also reduces the noise of TOA estimation. Finally, the diversity achieved from the proposed scheme improves TOA estimation performance. The de-correlation effect is analyzed mathematically. The estimation accuracy of the proposed diversity scheme is superior to that of conventional diversity scheme in multipath channel.

Performance analysis of asynchronous DS-CDMA system with MRC diversity in fading channels

  • Seo, Seok;Lee, Chan-kil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1237-1243
    • /
    • 2004
  • This paper presents and analyses the closed-form expression of the average bit error rate (BER) for an asynchronous direct-sequence code division multiple access (DS-CDMA) system with coherent binary phase shift keying (BPSK) modulation scheme using a maximal ratio combining (MRC) diversity over a Rician fading channel. In addition to the average BER, outage probability, and user capacity of system are estimated as performance measures. The results are general enough so that it includes Rayleigh fading and nonfading channel with zero and infinite Rician factor, respectively, as special cases. The effects of various channel models, processing gains, and diversity orders on the system performances are also considered for the typical multipath delay profiles characterized by Rician fading channel.

On Maximum Diversity Order over Doubly-Selective MIMO-OFDM Channes

  • Yang Qinghai;Kwak Kyung Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.628-638
    • /
    • 2005
  • The analysis of maximum diversity order and coding gain for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems over time-and frequency-selective (or doubly-selective) channels is addressed in this paper. A novel channel time-space correlation function is developed given the spatially correlated doubly-selective Rayleigh fading channel model. Based on this channel-model assumption, the upper-bound of pairwise error probability (PEP) for MIMO-OFDM systems is derived under the maximum likelihood (ML) detection. For a certain space-frequency code, we quantify the maximum diversity order and deduce the expression of coding gain. In this wort the impact of channel time selectivity is especially studied and a new definition of time diversity is illustrated correspondingly

An Efficient Channel Estimation for Amplify and Forward Cooperative Diversity with Relay Selection

  • Jeong, Hyun-Doo;Lee, Jae-Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.94-98
    • /
    • 2009
  • In this paper, we propose a new channel estimation scheme for amplify and forward cooperative diversity with relay selection. In order to select best relay, it is necessary to know channel state information (CSI) at the destination. Most of the previous works, however, assume that perfect CSI is available at the destination. In addition, when the number of relay is increased it is difficult to estimate CSI through all relays within coherence time of a channel because of the large amount of frame overhead for channel estimation. In a proposed channel estimation scheme, each terminal has distinct pilot signal which is orthogonal each other. By using orthogonal property of pilot signals, CSI is estimated over two pilot signal transmission phases so that frame overhead is reduced significantly. Due to the orthogonal property among pilot signals, estimation error does not depend on the number of relays. Simulation result shows that the proposed channel estimation scheme provides accurate CSI at the destination.

  • PDF

Multi-Relay Cooperative Diversity Protocol with Improved Spectral Efficiency

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.240-249
    • /
    • 2011
  • Cooperative diversity protocols have attracted a great deal of attention since they are thought to be capable of providing diversity multiplexing tradeoff among single antenna wireless devices. In the high signal-to-noise ratio (SNR) region, cooperation is rarely required; hence, the spectral efficiency of the cooperative protocol can be improved by applying a proper cooperation selection technique. In this paper, we present a simple "cooperation selection" technique based on instantaneous channel measurement to improve the spectral efficiency of cooperative protocols. We show that the same instantaneous channel measurement can also be used for relay selection. In this paper two protocols are proposed-proactive and reactive; the selection of one of these protocols depends on whether the decision of cooperation selection is made before or after the transmission of the source. These protocols can successfully select cooperation along with the best relay from a set of available M relays. If the instantaneous source-to-destination channel is strong enough to support the system requirements, then the source simply transmits to the destination as a noncooperative direct transmission; otherwise, a cooperative transmission with the help of the selected best relay is chosen by the system. Analysis and simulation results show that these protocols can achieve higher order diversity with improved spectral efficiency, i.e., a higher diversity-multiplexing tradeoff in a slow-fading environment.