• Title/Summary/Keyword: Diversity Antenna

Search Result 353, Processing Time 0.025 seconds

Diversity and Directivity Mode-Switchable Planar Antenna Array (접고 펼침에 따라 다이버시티와 지향성 모드로 변환이 가능한 평면형 안테나 어레이)

  • Choe, Hyeonhyeong;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.233-238
    • /
    • 2013
  • In this paper, a novel diversity and directivity mode-switchable planar antenna array is proposed. For the diversity mode, four elements are unfolded on the plane and high isolation can be achieved. On the other hand, the antenna function is changed to the directivity mode when they are folded and stacked. Each element works such as a stacked Yagi-Uda antenna with high directivity. Especially, the curved feed line as well as the hybrid feeding method is used to improve performances. The simulation results agree well with measurement results and it is successfully demonstrated that two modes are properly working at 2.4 GHz.

A New Type of the Active Array Antenna for IMT-2000 Base Stations by Using Dual-Polarization Diversity (새로운 형태의 IMT-2000 기지국용 이중편파 다이버시티 능동형 배열안테나)

  • 이학용;강기조;이병제;이종철;김종헌;김남영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.4
    • /
    • pp.359-365
    • /
    • 2002
  • In this work, a new type of the active array antenna for IMT-2000 base stations by using dual-polarization diversity is proposed and developed. As an element of array antenna, a single micorstrip patch antenna of ${\pm}$ 45$^{\circ}$slanted is designed by obtaining the bandwidth of 1,885 ㎒ to 22,000 ㎒. The polarization isolation between two linearly polarized waves is less than 16 ㏈. The gain of element antenna is more than 7 ㏈i. finally, 2${\times}$8 dual-polarization active array antenna is developed with ElRP of 1,200 W and polarization isolation of 20 ㏈ by placing a low power amplifier at each antenna element.

Broad Band Microstrip Antenna with Saw Tooth Perturbations for Polarization Diversity (톱니 모양의 Perturbation을 갖는 편파 Diversity 용 광대역 마이크로스트립 안테나)

  • 김태홍;노근식;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.505-513
    • /
    • 2000
  • This study suggests new antenna design for polarization diversity. For dual polarization, two port feeding lines are printed on two separate layers and cross-shaped aperture is located on ground between the substrates. For reducing back radiation, a reflector is attached around $\lambda$/4 behind feeding substrates. For wide bandwidth we use a perturbed patch with saw tooth shaped. This perturbation effect causes reduction of antenna size and also reduction of array size. With the antenna proposed here, $1\times4$ array dual polarization antenna for polarization diversity of PCS base station is built. One single element has as large as 10.3%, 11.3% bandwidths at each port, V.S.W.R less than 1.3 and the isolation is less than -40 dB, also array antenna has 13.2% 12.7% band bandwidth, V.S.W.R less than 1.3 the isolation below -36dB and the XPD of 10 dB.

  • PDF

A High-Isolation MIMO Antenna with Dual-Port Structure for 5G Mobile Phones

  • Yang, Hyung-kyu;Lee, Won-Woo;Rhee, Byung-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1458-1470
    • /
    • 2018
  • In this letter, a new dual-port Multiple-Input Multiple-Output (MIMO) antenna is introduced which has two independent signal feeding ports in a single antenna element to achieve smaller antenna volumes for the 5G mobile applications. The dual-port structure is implemented by adding a cross coupled semi-loop (CCSL) antenna as the secondary radiator to the ground short of inverted-F antenna (IFA). It is found that the port to port isolation is not deteriorated when an IFA and CCSL is combined to form a dual-port structure. The isolation property of the proposed antenna is compared with a polarization diversity based dual-port antenna proposed in the literature [9]. The operating frequency range is 3.3-4.0 GHz which is suitable for places where $4{\times}4$ MIMO systems are supposed to be deployed such as in China, EU, Korea and Japan at the band ${\times}$ (3.3 - 3.8GHz. The measured 6-dB impedance bandwidths of the proposed antennas are larger than 700 MHz with isolation between the feeding ports higher than 18 dB [1-2]. The simulation and measurement results show that the proposed antenna concept is a very promising alternative for 5G mobile applications.

Adaptive MIMO Transmission Method based on the Optimal Combination of Antenna Diversity with Spatial Multiplexing (안테나 다이버시티와 공간 다중화의 조합에 기초한 적응적 MIMO 전송 기법)

  • Kim, Dae-Hyun;Kim, Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.394-401
    • /
    • 2007
  • MIMO transmission systems can have various transmission modes, which result from the various combinations of the antenna diversity with spatial multiplexing. In this paper, we find the optimal mode to maximize the capacity with the BER constraint and the optimal selection (diversity transmission or spatial multiplexing transmission) for transmission of each transmission antenna, if necessary. The computer simulation results show that the proposed scheme has more capacity than the conventional scheme.

Spatial Coding using Data Information and Antenna Selection Technique in MIMO System (MIMO 시스템에서 데이터 정보와 안테나 선택 기법을 이용한 공간 부호화)

  • Song, Jae-Woong;Kim, Back-Hyun;Jeong, Rag-Gyo;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.81-88
    • /
    • 2012
  • Space diversity and space multiplexing gain can be achieved with MIMO system. This paper proposes spatial coding method to MIMO system using data information and antenna selection technique. This technique provides coding gain as well as space diversity gain. For MIMO system with BPSK modulation, BER performance is analyzed and space diversity gains are compared through simulation in terms of data maldistribution degree.

Relay-assisted Multiple Access Channel Protocol for Cooperative Diversity

  • Kim, Dong-Hyun;Kim, Gil;Lee, Kwang-Bok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.1-8
    • /
    • 2009
  • Cooperative diversity is a novel technique to improve diversity gains, capacity gains, and energy saving. This technique involves multiple terminals sharing resources in order to build a virtual antenna array in a distributed fashion. In this paper, we propose a multi-user cooperative diversity protocol called Relay-assisted Multiple Access Channel(R-MAC) that allows multiple source terminals to transmit their signals simultaneously and the relay terminal forwards the aggregated signal received from the source terminals to the destination terminal. The proposed protocol converts the distributed antenna channels into an effective MIMO channel by exploiting a relay, increasing both diversity gain and system throughput. We investigate the performance of the proposed protocol in terms of outage probability and diversity-multiplexing tradeoff where we assume block fading channel environment. Our simulation results show that the proposed protocol outperforms direct transmission in the high spectral efficiency regime where the conventional cooperative diversity protocols cannot outperform direct transmission.

Reconfigurable Microstrip Patch Antenna with Switchable Polarization

  • Chung, Kyung-Ho;Nam, Yong-Sik;Yun, Tae-Yeoul;Choi, Jae-Hoon
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.379-382
    • /
    • 2006
  • A novel reconfigurable microstrip patch antenna with frequency and polarization diversities is proposed. A U-slot is incorporated into a square patch, and a PIN diode is utilized to switch the slot on and off, which realizes the frequency diversity characteristic. The polarization diversities among linear polarization (LP), right-hand circular polarization (RHCP), and left-hand circular polarization (LHCP) are also obtained by switching three PIN diodes on the slot and the truncating corners of a square patch on and off. The antenna design and experimental results are presented.

  • PDF

Error Performance of Spatial-temporal Combining-based Spatial Multiplexing UWB Systems Using Transmit Antenna Selection

  • Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.215-219
    • /
    • 2012
  • This paper applies transmit antenna selection algorithms to spatial-temporal combining-based spatial multiplexing (SM) ultra-wideband (UWB) systems. The employed criterion is based on the largest minimum output signal-to-noise ratio of the multiplexed streams. It is shown via simulations that the bit error rate (BER) performance of the SM UWB systems based on the two-dimensional Rake receiver is significantly improved by antenna diversity through transmit antenna selection on a log-normal multipath fading channel. When the transmit antenna diversity through antenna selection is exploited in the SM UWB systems, the BER performance of the spatial-temporal combining-based zero-forcing (ZF) receiver is also compared with that of the ZF detector followed by the Rake receiver.

BER of Rectangular QAM signals with MRC over Correlated Nakagami Fading Channels

  • Baek Kyung Hoon;Hyun Kwang Min;Yoon Dong Weon;Park Sang Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.653-657
    • /
    • 2004
  • The average bit error rate (HER) performance of a Gray coded arbitrary rectangular quadrature amplitude modulation (AR-QAM) signal with maximal ratio combining (MRC) diversity in an arbitrarily correlated Nakagami-m fading channel is derived and analyzed. The derived two types of general solutions are a simple closed-form and an integral form, depending on the types of the values (integer and non-integer) of the fading parameter. Using the derived equations in this paper, we analyzed the HER performances numerically based on the practical base station antenna configuration. The results show that MRC reception is a very effective scheme so far even though the combined signals are not independent each other because of the correlation values. The antenna height and separation of the MRC system relate to the correlation coefficient value between antennas, and go a long way with the diversity advantage. In particular, it is needed to be determined the antenna height that is carefully do for the diversity advantage because the correlation coefficient and the antenna height gain are contrary to each other from the aspect of the system performance. The expressions presented here can offer a convenient way to evaluate the exact HER performance of an arbitrary rectangular QAM signal with MRC diversity reception for various cases of practical interest on a correlated Nakagami fading channel.

  • PDF