• Title/Summary/Keyword: Divergent Nozzle

Search Result 62, Processing Time 0.025 seconds

Assessment of Turbulence Models with Compressibility Correction for Large Flow Separation in a Supersonic Convergent-Divergent Rectangular Nozzle (강한 박리 유동을 동반한 초음속 수축-확장 사각 노즐 유동에 적합한 난류 모델과 압축성 보정 모델의 평가)

  • Lee, Juyong;Shin, Junsu;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.40-47
    • /
    • 2018
  • The objective of this study is to investigate the turbulence models with compressibility correction for large separation-flow in a supersonic convergent-divergent rectangular nozzle. As turbulence models, Yang and Shih's Low-Re $k-{\varepsilon}$ model, Mener's $k-{\omega}$ SST model and Wilcox's $k-{\omega}$model were evaluated. In order to get a significant compressible effects, Sarkar and Wilcox compressibility correction models were applied to the turbulence models respectively. Also, the simulation results were compared with experimental data. The turbulence model with compressibility correction model improves both of shock position and pressure recovery, but deteriorates the length of Mach disk.

Performance Analysis of Secondary Gas Injection for a Conical Rocket Nozzle TVC(II) (2차 가스분사에 의한 원추형 로켓노즐 추력벡터제어 성능해석 (II))

  • Song, Bong-Ha;Ko, Hyun;Yoon, Woong-Sup;Lee, Sang-Kil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.18-25
    • /
    • 2001
  • The results of systematic numerical experiments of secondary gas injection thrust vector control are presented. The effects of secondary injection system such as injection location and nozzle divergent cone angle onto the overall performance parameters such as thrust ratio, specific impulse ratio and axial thrust augmentation, are investigated. Complex nozzle exhaust flows induced by the secondary jet penetration is numerically analyzed by solving unsteady three-dimensional Reynolds-averaged Navier-Stokes equations with Baldwin-Lomax turbulence model for closure. Numerical simulations compared with the experiments of secondary air injection into the rocket nozzle of $9.6^{\cire}$ divergent half angle showed good agreement. The results obtained in terms of overall performance parameters showed that locating the secondary injection orifice further downstream of primary nozzle ensures the prevention of occurrence of reflected shock wave, therefore is suitable for efficient and stable thrust vectoring over a wide range of use.

  • PDF

Visualization of Hysteresis Phenomenon of Shock Waves in Supersonic Internal Flow

  • Suryan, Abhilash;Shin, Choon-Sik;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.31-39
    • /
    • 2010
  • Hysteresis is an effect by which the order of previous events influences the order of subsequent events. Hysteresis phenomenon of supersonic internal flows with shock waves has not yet been clarified satisfactorily. In the present study, experiments are carried out on internal flow in a supersonic nozzle to clarify the hysteresis phenomena for the shock waves. Flow visualization is carried out separately on the straight and divergent channels downstream of the nozzle throat section. Results obtained were compared with numerically simulated data. The results confirmed hysteresis phenomenon for shock wave in the Laval nozzle at a certain specific condition. The relationship between hysteresis phenomenon and the range of the rate of change of pressure ratio with time was shown experimentally. The existence of hysteretic behavior in the formation, both the location and strength, of shock wave in the straight part of the supersonic nozzle with a range of pressure ratio has also been confirmed numerically.

Experimental and Computational Studies of the Fluidic Thrust Vector Control Using a Counterflow Concept (Counterflow 개념을 이용한 추력벡터 제어에 관한 실험적 및 수치해석적 연구)

  • Lim, Chae-Min;Lee, Kwon-Hee;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1637-1642
    • /
    • 2004
  • Experimental and computational studies were performed to investigate the effectiveness of a thrust vectoring method using a counterflow concept. A shadowgraph method was used to visualize the supersonic jet expanded from a two-dimensional convergent-divergent nozzle and deflected by a now suction. The primary nozzle pressure and suction nozzle pressure ratios are varied between 3.0 and 5.0, and between 0.2 and 1.0 respectively. The present experimental and computational results showed that, for a given primary nozzle pressure ratio, a decrease in the suction nozzle pressure ratio produced an increased thrust vector angle, and during the change processes of the suction pressure, a hysteresis effect of the thrust vectoring was found through the wall pressure distributions.

  • PDF

An Experimental Study of the Nozzle Lip Thickness Effect on Supersonic Jet Screech Tones

  • Aoki Toshiyuki;Kweon Yong-Hun;Miyazato Yoshiaki;Kim Heuy-Dong;Setoguchi Toshiaki
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.522-532
    • /
    • 2006
  • It is well known that screech tones of supersonic jet are generated by a feedback loop driven by the instability waves. Near the nozzle lip where the supersonic jet mixing layer is receptive to external excitation, acoustic disturbances impinging on this area excite the instability waves. This fact implies that the nozzle lip thickness can influence the screech tones of supersonic jet. The objective of the present study is to experimentally investigate the effect of nozzle-lip thickness on screech tones of supersonic jets issuing from a convergent-divergent nozzle. A baffle plate was installed at the nozzle exit to change the nozzle-lip thickness. Detailed acoustic measurement and flow visualization were made to specify the screech tones. The results obtained obviously show that nozzle-lip thickness significantly affects the screech tones of supersonic jet, strongly depending on whether the jet at the nozzle exit is over-expanded or under-expanded.

Transient Shock Waves in Supersonic Internal Flow

  • Suryan, Abhilash;Shin, Choon-Sik;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.357-361
    • /
    • 2010
  • When high-pressure gas is exhausted through nozzle exit to the atmosphere, expanded supersonic jet is formed with the Mach disk at a specific condition. In two-dimensional supersonic jets, the hysteresis phenomenon of the reflected shock waves is found to occur under quasi-steady flow conditions. Transitional pressure ratio between the regular reflection and Mach reflection in the jet is affected by this phenomenon. In the present study, experiments are carried out on internal flow in a supersonic nozzle to clarify the hysteresis phenomena for the shock waves and to discuss its interdependence on the rate of the change of pressure ratio with time. Flow visualization is carried out separately on the straight and divergent channels downstream of the nozzle throat section. The influence that the hysteresis phenomena have on the location of shock wave in a supersonic nozzle is also investigated experimentally.

  • PDF

Influence of a isolator in supersonic nozzle on thermal choking (초음속 노즐의 분리부가 열폐색에 미치는 영향)

  • Kim, Sangwoo;Kim, Youngcheol;Kim, Jangwoo
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • This study presents numerical solutions of the two-dimensional Navier-Stokes equations for supersonic unsteady flow in a convergent-divergent nozzle with a isolator. The TVD scheme in generalized coordinates is employed in order to calculate the moving shock waves caused by thermal choking. We discuss on transient characteristics, unstart phenomena, fluctuations of specific thrust caused by thermal choking and effects of isolator. The adverse pressure gradient caused by heat addition brings about separation of the wall boundary layers and formation of the oblique shock wave that proceed to upstream. The proceeding speed of the oblique shock wave to upstream direction for the convergent-divergent nozzle with isolator is lower than that for the nozzle without isolator.

Effect of Secondary Flow Injection on Flow Charncteristics in 3-Dimensional Supersonic Nozzle (초음속 노즐 내 2차 분사 slot 개수에 따른 유동 특성 변화)

  • Song, J.W.;Yi, J.J.;Cho, H.H.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3529-3533
    • /
    • 2007
  • The advantages of the SITVC(secondary injection thrust vector control) technique over mechanical thrust vector systems include a reduction in both the nozzle weight and complexity due to the elimination of the mechanical actuators that are used in conventional vectoring. Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design mach number 3. The effect of injection hole number and shape of secondary jet on the mach number distribution of SITVC were investigated. The standard ${\kappa}$ - ${\epsilon}$ turbulence model solved the complex three-dimensional nozzle flows perturbed by the secondary gas jet. The numerical code was validated by experiment. The results showed that the mach number distribution of circular and square nozzle are similar each other. As number of second injection hole increasing, a effect of deflection was decreased.

  • PDF

The Effect of the Secondary Annular Stream on Supersonic Jet

  • Lee, Kwon-Hee;Toshiaki Setoguchi;Shigeru Matsuo;Kim, Hyeu-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1793-1800
    • /
    • 2003
  • The present study addresses an experimental investigation of the near field flow structures of supersonic, dual, coaxial, free, jet, which is discharged from the coaxial annular nozzle. The secondary stream is made from the annular nozzle of a design Mach number of 1.0 and the primary inner stream from a convergent-divergent nozzle. The objective of the present study is to investigate the interactions between the secondary stream and inner supersonic jets. The resulting flow fields are quantified by pitot impact and static pressure measurements and are visualized by using a shadowgraph optical method. The pressure ratios of the primary jet are varied to obtain over-expanded flows and moderately under-expanded flows at the exit of the coaxial nozzle. The pressure ratio of the secondary annular stream is varied between 1.0 and 4.0. The results show that the secondary annular stream significantly changes the Mach disc diameter and location, and the impact pressure distributions. The effects of the secondary annular stream on the primary supersonic jet flow are strongly dependent on whether the primary jet is under-expanded or over-expanded at the exit of the coaxial nozzle.

레이져 절단에서 노즐이 미치는 영향

  • 이호준;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.81-85
    • /
    • 1992
  • Quality of cut is strongly dependent on the cutting pressure, so this relationship can be identified by pressure measuring system. In this paper, the experiments presented were performed with the devised pressure measuring system and the laser cutting of STS 304. Convergent type and convergent-divergent type nozzle were used for pressure variation of the distance between nozzle and workpiece. In laser cutting of STS 304, 1.0 kW CO $\_$2/ laser used. The convergent type nozzle(1.0 mm diameter) pressured above 3 kgf/cm $\^$2/, the MSD(Mach Shock Disk) created, which caused the the pressure variations of the distance between nozzle and workpiece. The maximum cutting pressure exists in accordance with the variation of distance. In spite of far distance the maximum cutting pressure is achieved by using the pressure measuring system. The higher cutting pressure beneath the workpiece the less quantity of dross and the kerf width. Since the higher cutting pressure helps to remove the quantity of dross and to stop the exothermic energy into the material. The optimum laser cutting parameter of STS 304(2.0 mm thickness) with the convergent type nozzle(1.0 mm diameter)is 0.75 mm and 2.5 mm distance between nozzle and workpiece, 4 kgf/cm $\^$2/ cutting pressure. In 3.0 mm thickness case, 1.5 mm and 2.25 mm distance is achieved for good quality.