• Title/Summary/Keyword: Diurnal range

Search Result 138, Processing Time 0.029 seconds

A Weekend Effect in Diurnal Temperature Range and its Association with Aerosols in Seoul (서울의 일교차 주말효과와 에어러솔과의 연관성)

  • Kim, Byung-Gon;Kim, Yoo-Jun;Eun, Seung-Hee;Choi, Min-Hyuck
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.147-157
    • /
    • 2007
  • A weekend effect has been investigated in diurnal temperature range (DTR) for Seoul in Korea using 50-year (1955 ~ 2005) surface measurements of maximum and minimum temperatures, and particle mass concentrations (PM10). The minimum temperature increases by 0.42K per decade, 2 times faster than the maximum temperature during 1955 to 2005, for rapid urbanization has occurred in Seoul. The weekend effect, which is defined as the DTR for Sunday minus the average DTR for Tuseday through Thursday, can be as large as +0.08 K for the recent 20-year period relative to 0.01K for 1955 to 1975. Especially the wintertime DTR tends to have a remarkable positive weekend effect (+0.17K), that is, larger DTR on Sunday compared to weekdays, which seems to be associated with increased maximum temperature and thus an increase in DTR. This result could be explained by relative differences in PM10 concentration between Sunday and weekdays (Tuesday through Thursday), such that PM10 concentration on Sundays appears to be systematically lower about 12% than on weekdays. The annually average weekend DTR increases by 0.2K with $10{\mu}gm^{-3}$ decrease in PM10 concentration in comparison with weekdays. The results could be possible evidence of an anthropogenic link to DTR, one of climate important indicators, since no meteorological phenomenon is supposed to occur over a 7 day cycle.

The Change of Diurnal Temperature Range in South Korea (우리나라의 일교차 변화에 관한 연구)

  • Heo, In-Hye;Lee, Seung-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.2
    • /
    • pp.167-180
    • /
    • 2011
  • This paper investigates the changes of diurnal temperature range (DTR) by season and region in South Korea using daily maximum temperature and daily minimum temperature from 1954 to 2009. It also attempts to find what causes these changes. The daily minimum temperature distinctively increased during the latter half of the research period (1988~2009) than the first half of the year (1954~1987) leading decreases in DTR, while the rise in daily maximum temperature was not distinct during the research period. The DTR shows slightly increasing trend in spring. but decreasing trend in fall. The DTR is decreasing in urban region while it is increasing in rural area. The degree of the DTR decrease is bigger in large urban region than in medium-small urban region. The DTR in urban region is affected by the amount of clouds in spring and tile duration of sunshine in fall. The DTR in rural area is affected by the amount of clouds in spring and the number of days with precipitation in fall.

  • PDF

On the Characteristics of Globe Temperature Variation Observed at Downtown in Summer Season (하계에 도심지에서 관측된 흑구온도의 특성 분석)

  • Park, Jong-Kil;Jung, Woo-Sik;Kim, Seok-Cheol;Park, Gil-Un
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.907-918
    • /
    • 2008
  • In order to monitor the impact of high temperature which is seen frequently with climate change, we investigated the monthly change in globe temperature, air temperature, mean radiant temperature and effective radiant heat flow, because the four well reflect thermal radiation from bio-meteorological aspect. Both globe temperature and air temperature showed an increasing trend every month. Compared to air temperature, globe temperature had a wider range of temperature change and was more influenced by meteorological element such as precipitation. Diurnal trends of air temperature, globe temperature and the difference between their temperature had the lowest value before the sunrise and the highest around $1300{\sim}1500$ LST, showing the typical diurnal trends. Globe temperature and the difference between their temperature had a sharp increase around $1000{\sim}1100$ LST, maintained high value until 1700 LST and then reclined, though varied by month. The difference between globe temperature and air temperature was highly dependent on the amount of precipitation and clouds. The duration in which globe temperature was higher than air temperature was the lowest in July. Therefore the amount of precipitation was the most affecting, followed by the amount of clouds and wind. In order to find out the diurnal trends of temperature in city center and city outskirts, we assumed the roof of a concrete build ing as a city center, and the grass-covered observatory of the Gimhae International Airport as city outskirts. The diurnal trends of temperature in the two sites showed a strong correlation. The highest and lowest temperature also had the same trend.

Analysis on Variation of Diurnal Temperature Range of Busan and Daegu according to Urbanization (도시화에 따른 부산과 대구의 일교차 변화 특성에 관한 연구)

  • Park, Myung-Hee;Lee, Joon-Soo;Ahn, Ji-Suk;Lee, Hye-Hyun;Han, In-Seong;Eom, Ki-Hyuk;Suh, Young-Sang;Kim, Hae-Dong;Bae, Hun-Kyun
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.295-310
    • /
    • 2016
  • In this study, changes in daily temperature range were investigated using daily maximum and minimum temperatures of Busan and Daegu for last 81 years (1934-2014), and also characteristics of daily temperature range and seasonal fluctuations by urbanization were examined. First, elapsing changes showed a lower decreasing trend in Busan ($0.32^{\circ}C$) than Daegu ($1.28^{\circ}C$) for last 81 years. Daily temperature range showed the highest rise in winter in both Busan and Daegu. Second, daily temperature range due to urbanization showed that Busan had a pronounced decreasing trend before urbanization meanwhile Daegu showed the same trend after urbanization. On seasonal changes, the results of Busan showed a decreasing trend in summer before urbanization, and in autumn after urbanization. For Daegu, the results showed a decreasing trend in spring before urbanization, and in winter after urbanization. Seasonal fluctuations of Busan showed little difference in the pre and post-urbanization, except in winter and summer. There was large difference in daily temperature range in winter after urbanization, and in summer before the urbanization. The results in Daegu showed that there was decreasing trend of daily temperature range in all seasons after urbanization.

Comparison of the Thermal Environment in the Downtown Location and the Outskirt Site base on the Field Observations in the Summer (미기상 관측을 통한 하절기 도심과 외곽의 열환경 비교)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.94-101
    • /
    • 2009
  • This study which is the fundamental work to investigate the property of urban climate compared the property of thermal environment in the downtown location and the outskirt site based on the field observation in the summer. We analysed thermal environment in the downtown location mainly by distributional characteristics during day and night with changes and correlation analysis of the air temperature, the globe temperature and the surface temperature through the simultaneous observation of the property of thermal environment at two places in real time. The summary of finding in this study is as follows. (1)It is observed on the day chosen by sample that diurnal air temperature range in the downtown location is $22.3{\sim}34.9^{\circ}C$, and diurnal air temperature range in the Outskirt site is $20.0{\sim}34.3^{\circ}C$, so, we found that the diurnal air temperature range in the outskirt site is $1.7^{\circ}C$ higher than in the downtown location. (2)In comparison of the globe temperature after sunset, we found the change of more sudden temperature drops in the outskirt site than in the downtown location. (3)It is observed on the days chosen by sample that the average of globe temperature range is $1.1^{\circ}C$, the average of surface temperature range is $1.0^{\circ}C$, and air temperature range is $2.0^{\circ}C$, thus, the we found that the average of air temperature is $1.0^{\circ}C$ higher than globe temperature and the surface temperature. (4)After the consideration of air temperature and globe temperature distribution, the highest temperature reaching time of globe temperature is one hour earlier than air temperature in the downtown location, on the other hand, although the highest temperature reaching time of globe temperature in the outskirt sites is one hour later than in the downtown location, the timelag found in the downtown location was not found in the outskirt site.

Seasonal and Diurnal Variations of Surface Ozone at Ieodo in the East China Sea (이어도 해양과학기지의 오존농도의 계절변화와 일변화 특징)

  • Shin, Beom-Cheol;Lee, Mee-Hye;Lee, Jae-Hak;Shim, Jae-Seol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.631-639
    • /
    • 2007
  • We examined diurnal and seasonal variations of ozone ($O_3$) concentrations and its relation to meteorological parameters observed at the Ieodo Ocean Research Station ($32.07^{\circ}N$, $125.10^{\circ}E$, 36 m above sea level) during June 2003 and May 2005. Over the 2-year period, the mean ozone concentration was $49.5{\pm}15.5\;ppbv$. Ozone concentrations show great variability with a monthly mean up to 68.2 ppbv in May 2005 and seasonal variations with being highest in spring and fall, and lowest in summer. However, the amplitude of diurnal variation was less than ${\sim}4\;ppbv$ with a maximum at $3{\sim}4\;p.m.$ and minimum at $7{\sim}8\;a.m.$ HYSPLIT backward air trajectory indicated that the air masses with higher ozone came from the north or northwest and those with lower ozone arrived mainly via southerly or southeasterly. Ozone distributions at Ieodo Ocean Research Station were observed to be significantly impacted by long-range transport and regional scale air circulation.

'Pneumonia Weather': Short-term Effects of Meteorological Factors on Emergency Room Visits Due to Pneumonia in Seoul, Korea

  • Sohn, Sangho;Cho, Wonju;Kim, Jin A;Altaluoni, Alaa;Hong, Kwan;Chun, Byung Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.2
    • /
    • pp.82-91
    • /
    • 2019
  • Objectives: Many studies have explored the relationship between short-term weather and its health effects (including pneumonia) based on mortality, although both morbidity and mortality pose a substantial burden. In this study, the authors aimed to describe the influence of meteorological factors on the number of emergency room (ER) visits due to pneumonia in Seoul, Korea. Methods: Daily records of ER visits for pneumonia over a 6-year period (2009-2014) were collected from the National Emergency Department Information System. Corresponding meteorological data were obtained from the National Climate Data Service System. A generalized additive model was used to analyze the effects. The percent change in the relative risk of certain meteorological variables, including pneumonia temperature (defined as the change in average temperature from one day to the next), were estimated for specific age groups. Results: A total of 217 776 ER visits for pneumonia were identified. The additional risk associated with a $1^{\circ}C$ increase in pneumonia temperature above the threshold of $6^{\circ}C$ was 1.89 (95% confidence interval [CI], 1.37 to 2.61). Average temperature and diurnal temperature range, representing within-day temperature variance, showed protective effects of 0.07 (95% CI, 0.92 to 0.93) and 0.04 (95% CI, 0.94 to 0.98), respectively. However, in the elderly (65+ years), the effect of pneumonia temperature was inconclusive, and the directionality of the effects of average temperature and diurnal temperature range differed. Conclusions: The term 'pneumonia temperature' is valid. Pneumonia temperature was associated with an increased risk of ER visits for pneumonia, while warm average temperatures and large diurnal temperature ranges showed protective effects.

Investigation of Aerosol Number Concentration at Gosan Site in Jeju, Korea

  • Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.23-30
    • /
    • 2012
  • The aerosol number concentration have measured with an aerodynamic particle sizer spectrometer(APS) at Gosan site in Jeju, Korea, from March 2010 to March 2011. And then the atmospheric aerosol number concentration, the temporal variation and the size distribution of aerosol number concentration have been investigated. The aerosol number concentration varies significantly from 748 particles/$cm^3$ to zero particles/$cm^3$. The average number concentration in small size ranges are very higher than those in large size ranges. The number concentrations in the size range 0.25~0.28 ${\mu}m$, 0.40~0.45 ${\mu}m$ and 2.0~2.5 ${\mu}m$ are about 84 particles/$cm^3$, 2 particles/$cm^3$ and 0.4 particles/$cm^3$, respectively. The number concentrations in range of larger than 7.5 ${\mu}m$ are below 0.001 particles/$cm^3$. The seasonal variations in the number concentration for smaller particle(<1.0 ${\mu}m$) are not much, but the variations for larger particle are very evident. And strong amplitudes of diurnal variations of entire averaged aerosol number concentration are not observed. Size-fractioned aerosol number concentrations are dramatically decreased with increased particle size. The size-fractioned aerosol number concentrations in size range 0.8~4.0 ${\mu}m$ during nighttime are evidently higher than during daytime, but similar levels are appeared in other size range. The seasonal differences in the size-fractioned number concentrations for smaller size range(<0.7 ${\mu}m$) are not observed, however, the remarkable seasonal differences are observed for larger size than 0.7 ${\mu}m$.

Photosynthetic Characteristics of Panax ginseng C.A. Meyer I. Photosynthetic Response to Changes of Light Intensity and Leaf Temperature (고려인삼의 광합성 특성 I. 광도와 잎온도의 변화에 따른 광합성 반응)

  • 현동윤;황종규
    • Journal of Ginseng Research
    • /
    • v.17 no.3
    • /
    • pp.240-245
    • /
    • 1993
  • This study was conducted with ginseng plants to investigate photosynthetic response to changes of light intensity and leaf temperature. $CO_2$ uptake in diurnal course was highest in the first phase (8 00~5 : 30 Am.) on May 30, 1992. In $CO_2$ uptake related to stomatal conductance, these relationship was synchronized in diurnal course, but relationship between TEX>$CO_2$ uptake and intercellular $CO_2$ concentration in diurnal course was synchronized oppositely. Leaf temperature and light intensity at the highest $CO_2$ uptake were in the range of 23~$24^{\circ}C$) and 95$\mu$mol.$m^{-2}$.$s^{-1}$), $CO_2$ , respectively. In response to an increasing light intensity under a constant leaf temperature ($18^{\circ}C$), $CO_2$ uptake was increased throughout the light intensity sequence up to 250$\mu$mol.$m^{-2}$.$s^{-1}$), $CO_2$ When $CO_2$ uptake was measured with a series of leaf temperature under a constant light intensity (250 $\mu$mol.$m^{-2}$.$s^{-1}$), $CO_2$ uptake was highest at $18^{\circ}C$ as a 4.1$\mu$mol.$m^{-2}$.$s^{-1}$), $CO_2$ . Similar changes were also observed in stomatal conductance and intercellular $CO_2$ concentration. Evidences from several approaches indicate that synchronization of $CO_2$ uptake, stomatal conductance and intercellular $CO_2$ concentration were closely inter-related and changes of leaf temperature iuluenced the photo-response in photosynthetic processes.

  • PDF

On the Tides, Tidal Currents and Tidal Prisms at Inchon Harbor (인천항의 조석, 조류 및 조량에 대하여)

  • Yi, Sok-U
    • 한국해양학회지
    • /
    • v.7 no.2
    • /
    • pp.86-97
    • /
    • 1972
  • The tides, tidal currents and tidal prisms at Inchon Harbor are studied with recent data. The tides at Inchon Harbor is of semi-diurnal type having a spring range of 798cm and a phase age of 2 days. The monthly mean sea level at Inchon has a maximum at August and a minimum at January with a annual range of about 40cm. the tidal currents at Inchon Outer Harbor are of semi-diurnal type same as tides and nearly reversing type. The flood and ebb currents set north and south with a velocity of about 90-175 cm/sec and 120-225 cm/sec at spring tide and begin 0.2 hours after L.W. and 0.7 hours after H. W., respectively. Non-tidal currents flow southward with 10-20 cm/sec at west side of the stream and northward with 15-20 cm/sec at east side of the stream at Inchon Outer Harbor. The flood volume through the Inchon Outer Harbor fluctuates fortnightly from 590 10$\^$6/㎥ spring tide to 260 $10^6/m^3$ at neap tide and ebb volume changes from 470 $10^6/m^3$ at spring tide to 200 $10^6/m^3$ at neap tide, respectively. The flow area along the channel to the Estuary of Yeomha is controlled by the tidal prism as expressed by $A=1.14{\times}10^{-4}P^{0.966}$

  • PDF