• Title/Summary/Keyword: Diterpenoid

Search Result 59, Processing Time 0.024 seconds

Biotransformation of Diterpenoids From Aralia continentalis Roots by the Genus Fusarium (곰팡이 Fusarium 속을 이용한 독활 뿌리 추출물로부터 디테르페노이드의 생물전환)

  • Keumok Moon;Seola Lee;Eunhye Jo;Areum Lee;Jaeho Cha
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.215-226
    • /
    • 2024
  • Aralia continentalis is widely distributed in Far East Asian countries such as Korea, China, and Japan. A. continentalis has traditionally been used as an herbal remedy for various conditions, including analgesia, headache, inflammation, lameness, lumbago, rheumatism, and dental diseases in Korea. Previously, epi-continentalic acid, continentalic acid, and kaurenoic acid as major active biological compounds belonging to the diterpenoid class were identified. To synthesize diterpenoid derivatives with enhanced bioavailability, Fusarium fujikuroi was employed to biotransform diterpenoids due to its known antibacterial activity. This yielded two derivatives of kaurenoic acid, namely 16α-hydroxyent-kauran-2-on-19-oic acid and 2β, 16α-dihydroxy-ent-kauran-19-oic acid, with their chemical structures elucidated via NMR analysis. These derivatives exhibited increased polarity compared to kaur- enoic acid, as evidenced by their retention time on preparative HPLC using the ODS-A column and structural modifications. Evaluation of their antidiabetic activity targeting PTP1B, a negative regulator of the insulin signaling pathway, revealed inhibitory activities of 30.8% and 27.6%, respectively, at a concentration of 4 ㎍/ml. Additionally, both derivatives demonstrated low cytotoxicity, with an IC50 value 18 times higher than kaurenoic acid. Therefore, the augmented water solubility and reduced toxicity of 16α-hydroxy-ent-kauran-2-on-19-oic acid and 2β, 16α-dihydroxy-ent-kauran-19-oic acid, resulting from biotransformation by F. fujikuroi, render them promising candidates for industrial applications.

Prolonged Cardiopulmonary Resuscitation in a Cardiac Arrest Patient with Aconitine Intoxication (장시간 심폐소생술을 요한 초오중독에 의한 심정지 1례)

  • Hwang, In-Woo;Jeong, Tae-O;Lee, Jae-Baek;Jin, Youn-Ho
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.5 no.1
    • /
    • pp.67-70
    • /
    • 2007
  • Aconitum is an extremely dangerous plant that contains various toxic diterpenoid alkaloids, primarily concentrated in the roots. We report a case of acute intoxication of a 60-year-old man admitted to our emergency department after ingestion of a large amount of homemade aconitine decoction. At presentation about one hour after intake, the patient was unconscious and electrocardiographic analysis showed a ventricular tachycardia/fibrillation. Several times defibrillation was applied and antiarrhythmic agents were administered, but the patient still exhibited a refractory ventricular fibrillation and failed to return to spontaneous circulation. Sustained cardiopulmonary resuscitation finally produced a pulsatile cardiac rhythm at two hours after intake. The patient was discharged from our hospital on day 8. The authors stress that clinicians must be aware of the possible occurrence of life-threatening ventricular arrhythmia in cases of aconitine intoxication and be prepared to persist with prolonged CPR as necessary.

  • PDF

Oridonin Suppresses Proliferation of Human Ovarian Cancer Cells via Blockage of mTOR Signaling

  • Xia, Rong;Chen, Sun-Xiao;Qin, Qin;Chen, Yan;Zhang, Wei-Wei;Zhu, Rong-Rong;Deng, An-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.667-671
    • /
    • 2016
  • Oridonin, an ent-kaurane diterpenoid compound isolated from the traditional Chinese herb Rabdosia rubescens, has shown various pharmacological and physiological effects such as anti-tumor, anti-bacterial, and anti-inflammatory properties. However, the effect of oridonin on human ovarian cancer cell lines has not been determined. In this study, we demonstrated that oridonin inhibited ovarian cancer cell proliferation, migration and invasion in a dose-dependent manner. Furthermore, we showed oridonin inhibited tumor growth of ovarian cancer cells (SKOV3) in vivo. We then assessed mechanisms and found that oridonin specifically abrogated the phosphorylation/activation of mTOR signaling. In summary, our results indicate that oridonin is a potential inhibitor of ovarian cancer by blocking the mTOR signaling pathway.

Taxol Production in Taxus Cell Cultures: Effects of Various Elicitors (주목세포배양에 의한 Taxol 생산: 여러 가지 Elicitor가 미치는 영향)

  • 윤정환;김진훈
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.143-148
    • /
    • 1995
  • The effects of various elicitors, metabolic inhibitors and growth regulators on the production of diterpenoid anticancer agent taxol were investigated in cell suspension cultures of Taxus brevifolia. Cell cultures of T. brevifolia were treated by 5 kinds of biotic elicitors, 5 kinds of abiotic elicitors, 2 kinds of metabolic inhibitors and 8 kinds of growth regulators at the end of exponential growth phase. Among those treatments, chlorocholine chloride-an inhibitor of plant steroid metabolism-increased the taxol production most significantly. From a series of optimization studies, it was found that the addition of 1mM of chlorocholine chloride at the 9th day of culture was the best for taxol production. Taxol yield under this condition was 0.72mg/$\ell$.

  • PDF

Triptolide Inhibits Proliferation and Induces Apoptosis of Human Melanoma A375 Cells

  • Tao, Yue;Zhang, Meng-Li;Ma, Peng-Cheng;Sun, Jian-Fang;Zhou, Wu-Qing;Cao, Yu-Ping;Li, Ling-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1611-1615
    • /
    • 2012
  • Triptolide, a diterpenoid obtained from Tripteryglum wilfordii Hook.f, has attracted interest for its antitumor activities against human tumor cell lines in recent years. This report focuses on anti-proliferative and pro-apoptotic activities in human melanoma A375 cells assessed by CCK8 assay, Hoechst 33258 staining and flow cytometry. In addition, triptolide-induced arrest in the S phase was also observed. Caspase assays showed the apoptosis induced by triptolide was caspase-dependent and probably through intrinsic apoptotic pathways. Furthermore, expression of NF-${\kappa}B$ (p65) and its downstream factors such as Bcl-2, Bcl-$X_L$ was down-regulated. Taken together, the data indicate that triptolide inhibits A375 cells proliferation and induces apoptosis by a caspase-dependent pathway and through a NF-${\kappa}B$-mediated mechanism.

Regeneration and selection of root resistant Coleus forskohlii A threatened medicinal plant

  • George, Manju M.;Ssubramanian, R.B.;Prajapati, Hiren A.
    • Plant Resources
    • /
    • v.4 no.2
    • /
    • pp.65-74
    • /
    • 2001
  • Coleus forskohlii Briq, of the family Lamiaceae yields a valuable secondary metabolity known as forskolin which is a labdane diterpenoid.. Coleus forskohlii is the only known source of this compound. Forskolin is used in medicine for the treatment of glaucoma, congestive cardiomyopathy and asthma. Morphogenic callus was induced from young leaves on MS medium augmented with NAA and BA. These calli, when subcultured on MS with KN alone gave rise to shoots. The regenerated shoot developed good root system on MS medium fortified with NAA. The fully grown plantlets were transferred to soil for acclimatization. Coleus plant is mainly infected by a fungi Lasiodiplodia theobromae which causes root rot disease. The fungal culture filterate (ECE) of Lasiodiplodia theobromae, has been used in regeneration media to find the MIC and further to select resistant plants to the pathogen. In the present study 40% ECF in the medium showed maximum inhibition and is there fore considered as the MIC level of Coleus forshohlii. This data could prove to be useful for the future for selecting a resistant C.forskohlii plant against the root disease caused by L. theobromae.

  • PDF

Regeneration and selection of root rot resistant Coleus forskohlii A threatened medicinal plant

  • M.George, Manju;Subramanian, R.B.;A.Prajapati, Hiren
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.96-113
    • /
    • 2000
  • Coleus forskohlii Briq. of the family Lamiaceae yields a valuable secondary metabolite known as forskolin which is a labdane diterpenoid. Coleus forskohlii is the only known source of this compound. Forskolin is used in medicine for the treatment of glaucoma, congestive cardiomyopathy and asthma. Morphogenic callus was induced from young leaves on MS medium augmented with NAA and BA. These calli, when subcultured on MS with KN alone gave rise to shoots. The regenerated shoot developed good root system on MS medium fortified with NAA. The fully grown plantlets were transferred to soil for acclimatization. Coleus plant is mainly infected by a fungi Lasiodiplodia theobromae which causes root of disease. The fungal culture filterate (FCF) of Lasiodiplodia theobromae, has been used in regeneration media to find the MIC and further to select resistant plants to the pathogen. In the present study 40% FCF in the medium showed maximum inhibition and is there fore considered as the MIC level of Coleus forskohlii. This data could prove to be useful for the future for selecting a resistant C,forskohlii plant against the root disease caused by L.theobromae.

  • PDF

Inhibitory Effect of Kaurane Type Diterpenoids from Acanthopanax koreanum on TNF-$\alpha$ Secretion from Trypsin-Stimulated HMC-1 Cells

  • Cai, Xing-Fu;Shen, Guanghai;Dat, Nguyen-Tien;Kang, Ok-Hwa;Lee, Young-Mi;Lee, Jung-Joon;Kim, Young-Ho
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.731-734
    • /
    • 2003
  • Five known kaurane type diterpenoids, 16$\alpha$H, 17-isovaleryloxy-ent-kauran-19-oic acid (1), 16$\alpha$-hydroxy-17-isovaleryloxy-ent-kauran-19-oic acid (2), paniculoside-IV (3), 16$\alpha$-hydroxy-ent-kauran-19-oic acid (4), and ent-kaur-16-en-19-oic acid (5) were isolated from the root of Acanthopanax koreanum by repeated column chromatography and reversed phase preparative HPLC. The structures of these compounds were established from physicochemical and spectral data. Among the isolated compounds 16$\alpha$H, 17-isovaleryloxy-ent-kauran-19-oic acid (1) showed potent inhibitory activity ($IC_50$ value, 16.2 $\mu$ M) on TNF-$\alpha$ secretion from HMC-1, a trypsin-stimulated human leukemic mast cell line.

Anticancer Activity and Chemical Composition of a Non-Polar Fraction from Asiasari Radix et Rhizoma (세신 비극성 분획의 항암 활성 및 성분 분석)

  • Cho, Seung-Sik;Kang, Bok Yun;Bae, Min-Suk;Shim, Jung-Hyun;Kim, Hyun Jung;Yoon, Goo
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.264-269
    • /
    • 2020
  • The study aimed to characterize chemical composition and anticancer property of the n-hexane fraction derived from Asiasari Radix et Rhizoma. The anticancer activity was evaluated on a panel of cancer cell lines including HN22, HSC2, HSC3, and HSC4 cells (human oral cancer), HCC827 and HCC827GR cells (human lung cancer), and KYSE30 and KYSE450 (human esophageal cancer) by MTS assay. As a result, The least polar subfraction from n-hexane-soluble layer displayed notable cytotoxicity on the tumor cell lines with IC50 ranging from 1.20 to 17.0 ㎍/ml. The chemical composition of constituents in the active subfraction was determined by gas chromatography-mass spectrometry (GC-MS). The essential oils comprised of sesquiterpenes including β-gurjunene (7.45%), γ-amorphene (6.61%), guaia-6,9-diene (6.40%), δ-guaiene (5.21%) and a phenylpropanoid, safrole (0.49%) were mainly identified in addition to long-chain hydrocarbons including n-heptadecane (24.60%), 7-hexadecene (4.44%) and a diterpenoid, ent-kaur-16-ene (6.57%).

Di- and Sesqui-Terpenoids Isolated from the Pods of Sindora sumatrana and Their Potential to Inhibit Lipopolysaccharide-Induced Nitric Oxide Production

  • Jang, Dae-Sik;Min, Hye-Young;Jeong, Yeon-Hee;Lee, Sang-Kook;Seo, Eun-Kyoung
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.291-294
    • /
    • 2004
  • Activity-guided fractionation of the n-hexane and ${CHCl_3}-soluble$ fractions of Sindora sumatrana using a bioassay based on the inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) in murine macrophage RAW 264.7 cells led to the isolation of the known compound, $(+)-7{\beta}-acetoxy-15,16-epoxy-3$, 13(16), 14-clero-datriene-18-oic acid (2) as an active constituent. In addition, a new trans-clerodane diterpenoid, (+)-2-oxokolavenic acid (1), together with six known compounds, (+)-3, 13-clerodadiene-16,15-olide-18-oic acid (3), $(+)-7{\beta}-acetoxy-3$,13-clerodadiene-16,15-olide-18-oic acid (4), $(+)-7{\beta}-acetoxy-16-hydroxy-3$,13-clerodadiene-16, 15-olide-18-oic acid (5), ${\beta}-caryophyllene$ oxide (6), $clovane-2{\beta},9{\beta}-diol (7),{\;}and{\;}caryolane-1,9{\beta}-diol$ (8) were isolated and found to be inactive. The structure of compound 1 was determined using physical and spectroscopic methods such as 1D and 2D-NMR experiments. The known compounds 2-8 were identified by the spectroscopic data and by comparison with the published values. Of eight isolates (1-8), only compound 2 exhibited an iNOS inhibitory activity with $IC_{50}$/ value of $51.6{\;}\mu\textrm{m}M$.