• 제목/요약/키워드: Disturbed State Concept

검색결과 25건 처리시간 0.018초

싸이리스터 제어 직렬 보상기에 의한 전력계통 안정화 효과 (Power System Stabilization Effect by Thyristor Controlled Series Compensator)

  • 손광명;조정현;한학근;박종근;이병하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.9-11
    • /
    • 1994
  • FACTS concept is the control of power flow and increase of the loading on existing lines to the thermal limuts. This paper focuses on the ability of the thyristor controlled series compensator (TCSC) to stabilize the disturbed power systems. The result shows the potential benefit of the TCSC in addition to the role of controlling the steady state power flow. In order to show the effectiveness of controlled series capacitor, power system dynamic model is augmented and the effect of the SC into the power system dynamics is included. As a control algorithm, Linear Optimal Control theory is applied.

  • PDF

FE analysis of RC structures using DSC model with yield surfaces for tension and compression

  • Akhaveissy, A.H.;Desai, C.S.;Mostofinejad, D.;Vafai, A.
    • Computers and Concrete
    • /
    • 제11권2호
    • /
    • pp.123-148
    • /
    • 2013
  • The nonlinear finite element method with eight noded isoparametric quadrilateral element for concrete and two noded element for reinforcement is used for the prediction of the behavior of reinforcement concrete structures. The disturbed state concept (DSC) including the hierarchical single surface (HISS) plasticity model with associated flow rule with modifications is used to characterize the constitutive behavior of concrete both in compression and in tension which is named DSC/HISS-CT. The HISS model is applied to shows the plastic behavior of concrete, and DSC for microcracking, fracture and softening simulations of concrete. It should be noted that the DSC expresses the behavior of a material element as a mixture of two interacting components and can include both softening and stiffening, while the classical damage approach assumes that cracks (damage) induced in a material treated acts as a void, with no strength. The DSC/HISS-CT is a unified model with different mechanism, which expresses the observed behavior in terms of interacting behavior of components; thus the mechanism in the DSC is much different than that of the damage model, which is based on physical cracks which has no strength and interaction with the undamaged part. This is the first time the DSC/HISS-CT model, with the capacity to account for both compression and tension yields, is applied for concrete materials. The DSC model allows also for the characterization of non-associative behavior through the use of disturbance. Elastic perfectly plastic behavior is assumed for modeling of steel reinforcement. The DSC model is validated at two levels: (1) specimen and (2) practical boundary value problem. For the specimen level, the predictions are obtained by the integration of the incremental constitutive relations. The FE procedure with DSC/HISS-CT model is used to obtain predictions for practical boundary value problems. Based on the comparisons between DSC/HISS-CT predictions, test data and ANSYS software predictions, it is found that the model provides highly satisfactory predictions. The model allows computation of microcracking during deformation leading to the fracture and failure; in the model, the critical disturbance, Dc, identifies fracture and failure.

에너지 흐름(기(氣))의 간호학적 접근 (Nursing approach to energy (Qi) flow)

  • 김명자;이명숙
    • 동서간호학연구지
    • /
    • 제3권1호
    • /
    • pp.7-16
    • /
    • 1998
  • This paper reviewed the concept of the energy flow in east and west. The differences in the views of the energy flow between oriental and western thought were compaired according to the ontological point of view. Human body take up energy and material on open system which maintains homeostasis. Human and environment are continuously interacting in a state of co-existence. Human has energy field called "aura" and seven chakra in energy outflow moving came as meridian. Qi is an invisible cosmic energy helping the fundamental human activity and changes. The basic action of Qi is helping the human growth and development, maintain the body temperature and preventing the intrusion of microorganism. In the normal healthy organism, all are maintained in balance and in a continuous circulation of Qi, while illness is the result of the disturbed Qi flow in the aspect of Qi-theory. Although there are differences between oriental and western medicine in approaches to clients, the basic point of view and philosophy have many similarities on fundamental level. An understanding of the basic thought of energy flow and oriental concept of energy flow implies a more comprehensive meaning than the perspective of unitary transformation discussed in modern western thought of energy flow. Now we should avoid narrow view of energy concept and regard energy flow as an integrated concept with Korean culture. Regarding Qi-theory which provides a comprehensive and humanistic and ethical foundation for nursing philisophy through this overview, it is hoped that a contribution will be made to the development of nursing intervention which is suitable to Korean context.

  • PDF

토목섬유 interface의 변형율 연화 모델 개발 (Development of Strain-softening Modeling for Interfaces between Geosynthetics)

  • 서민우;박준범;박인준;조남준
    • 한국지반신소재학회논문집
    • /
    • 제2권1호
    • /
    • pp.57-68
    • /
    • 2003
  • Strain-softening model is developed to characterize the interface behavior of geomembrane with geotextile and geosynthetic clay liner(GCL). The model proposed in this research is calibrated by using data from direct shear tests conducted on smooth and textured geomembrane. The research is divided into two regions, pre-peak and post-peak, to take into account of strain-softening effect. Although slight difference between measured and back calculated data is observed under high normal stress, good agreements, in general, are found from back calculations. Especially, good consistency is observed in the case of low normal stress. Based on the results, it can be concluded that the proposed model can be a reasonable constitutive law to figure out the behavior of strain-softening between interfaces of geomembrane. In addition, DSC(Disturbed State Concept) model is also presented for further application in geosynthetic interfaces.

  • PDF

폐기물 매립장 지반-토목섬유 접촉면의 동적 전단거동 특성 (Dynamic Shear Behavior of the Ground-geosynthetics Interface in the Waste Landfill)

  • 장동인;김영준;곽창원;박인준
    • 한국지반공학회논문집
    • /
    • 제31권4호
    • /
    • pp.5-12
    • /
    • 2015
  • 최근 늘어나고 있는 폐기물량에 따라 폐기물 매립장의 건설이 증가하고 있으며, 매립장 내 폐기물의 보강 및 보호 목적으로 토목섬유가 널리 사용되고 있다. 토목섬유는 흙과의 접촉면을 형성하는데 폐기물 매립장의 전단 거동에 영향을 미치게 된다. 본 연구에서는 침출수 내의 산성 및 염기성과 같은 성분이 반복 전단하중 상태에서 지반-토목섬유 접촉면의 전단강도 감소에 미치는 영향을 실내 시험을 통하여 분석하였다. 이를 위하여 동적 접촉면 전단시험기를 제작하고 60일, 840일간 수침시킨 토목섬유와 흙 시료를 이용하여 반복 단순전단시험을 수행하였고, 그 결과를 교란상태개념에 기초하여 화학적 인자들에 의한 지반-토목섬유 접촉면의 전단강도 감소 특성을 교란도 함수로써 확인하였다.