• Title/Summary/Keyword: Disturbances

Search Result 2,806, Processing Time 0.032 seconds

DOB-based piezoelectric vibration control for stiffened plate considering accelerometer measurement noise

  • Li, Shengquan;Zhao, Rong;Li, Juan;Mo, Yueping;Sun, Zhenyu
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents a composite control strategy for the active suppression of vibration due to the unknown disturbances, such as external excitation, harmonic effects and control spillover, as well as high-frequency accelerometer measurement noise in the all-clamped stiffened plate. The proposed composite control action based on the modal approach, consists of two contributions including feedback part and feedforward part. The feedback part is the well-known PID controller, which is widely used to increase the structure damping and improve its dynamic performance close to the resonance frequencies. In order to get better performance for vibration suppression, the weight matrixes is optimized by chaos sequence. Then an improved disturbance observer (IDOB) as the feedforward compensation part is developed to enhance the vibration suppression performance of PID under various disturbances and uncertainties. The proposed IDOB can simultaneously estimate the various disturbances dynamically as well as measurement noise acting on the system and suppress them by feedforward compensation design. A rigorous analysis is also given to show why the IDOB can effectively suppress the unknown disturbances and measurement noise. In order to verify the proposed composite control algorithm (IDOB-PID), the dSPACE real-time simulation platform is used and an experimental platform for the all-clamped stiffened plate active vibration control system is set up. The experimental results demonstrate the effectiveness, practicality and strong anti-disturbances ability of the proposed control strategy.

Control of Advanced Reactor-coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

  • Skavdahl, Isaac;Utgikar, Vivek;Christensen, Richard;Chen, Minghui;Sun, Xiaodong;Sabharwall, Piyush
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1349-1359
    • /
    • 2016
  • Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX ($T_{co}$) and the hot outlet temperature of the intermediate heat exchanger ($T_{ho2}$) by manipulating the hot-side flow rates of the heat exchangers ($F_h/F_{h2}$) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX ($T_{co}$) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.

Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.641-651
    • /
    • 2019
  • The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second moment is derived based on the $It{\hat{o}}$ stochastic differential rule. The stochastically and deterministically parameter-excited vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance amplitude.

Power Disturbance Detection using the Inflection Point Estimation (변곡점 추정을 이용한 전력선 신호의 이상현상 검출)

  • Iem, Byeong-Gwan
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.710-715
    • /
    • 2021
  • Power line signal can show disturbances due to various causes. Typical anomalies are temporary sag/swell of the amplitude, flat topped signal, and harmonic distortions. The disturbances need to be detected and treated properly for the quality of the power signal. In this study, the power disturbances are detected using the inflection points (IP). The inflection points are defined as points where local maxima/minima or the slope changes occur. The power line signal has a fixed IP pattern since it is basically sinusoidal, and it may have additional inflection points if there is any disturbance. The disturbance is detected by comparing the IP patterns between the normal signal and distorted signal. In addition, by defining a cost function, the time instant where the disturbance happens can be decided. The computer simulation shows that the proposed method is useful for the detection of various disturbances. The simple sag or swell signal only shows the amplitude changes at the detected inflection points. However, the flat top signal and harmonically distorted signal produce additional inflection points and large values in the cost function. These results can be exploited for the further processing of disturbance classification.

Power Quality Disturbances Detection and Classification using Fast Fourier Transform and Deep Neural Network (고속 푸리에 변환 및 심층 신경망을 사용한 전력 품질 외란 감지 및 분류)

  • Senfeng Cen;Chang-Gyoon Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.115-126
    • /
    • 2023
  • Due to the fluctuating random and periodical nature of renewable energy generation power quality disturbances occurred more frequently in power generation transformation transmission and distribution. Various power quality disturbances may lead to equipment damage or even power outages. Therefore it is essential to detect and classify different power quality disturbances in real time automatically. The traditional PQD identification method consists of three steps: feature extraction feature selection and classification. However, the handcrafted features are imprecise in the feature selection stage, resulting in low classification accuracy. This paper proposes a deep neural architecture based on Convolution Neural Network and Long Short Term Memory combining the time and frequency domain features to recognize 16 types of Power Quality signals. The frequency-domain data were obtained from the Fast Fourier Transform which could efficiently extract the frequency-domain features. The performance in synthetic data and real 6kV power system data indicate that our proposed method generalizes well compared with other deep learning methods.

Clinical Effectiveness of Korea Ginseng on Climacteric Disturbances and Its Possible Mechanism of Action

  • Ogita, Sacchio
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.20-24
    • /
    • 1990
  • The climacteric is that phase in the aging process during which a woman passes from the reproductive to the non-reproductive stage. The signals, such as hot flashes, vaso-motoric disturbances, perspiration, stiff shoulders, emotional symptoms, are refereed to as climacteric disturbances. Treatment of climacteric symptoms centers on estrogen replacement and transquilizers, but there are many problems to be solved to use these hormones/drugs as far as dosage, duration and complications are concerned. The care of women during the climacteric years should provide relief of distressing symptoms with as high a degree of safety as possible. From this viewpoint, we used red ginseng powder to those patients with high menopausal index successfully. We studied its mechanism of action and proved that red ginseng improved the micro-circulation system via improvement of erythrocyte deferability which enhanced sex steroidgenesis consequently

  • PDF

Automation Development in Water and Wastewater Systems

  • Olsson, Gustaf
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.197-200
    • /
    • 2007
  • Advanced control is getting increasingly demanded in water and wastewater treatment systems. Various case studies have shown significant savings in operating costs, including energy costs, and remarkably short payback times. It has been demonstrated that instrumentation, control and automation (ICA) may increase the capacity of biological nutrient removing wastewater treatment plants by 10-30% today. With further understanding and exploitation of the mechanisms involved in biological nutrient removal the improvements due to ICA may reach another 20-50% of the total system investments within the next 10-20 years. Disturbances are the reason for control of any system. In a wastewater treatment system they are mostly related to the load variations, but many disturbances are created also within the plant. In water supply systems some of the major disturbances are related the customer demand as well as to leakages or bursts in the pipelines or the distribution networks. Hardly any system operates in steady state but is more or less in a transient state all the time. Water and energy are closely related. The role of energy in water and wastewater operations is discussed. With increasing energy costs and the threatening climate changes this issue will grow in importance.

Synchronization of Linear Time-Varying Multi-Agent Systems with Heterogeneous Time-Varying Disturbances Using Integral Controller (적분 제어기를 이용한 이종 시변 외란을 갖는 선형 시변 다 개체 시스템의 동기화)

  • Kim, Jae-Yong;Yang, Jong-Wook;Shim, Hyung-Bo;Kim, Jung-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.622-626
    • /
    • 2012
  • This paper presents synchronization of LTV (Linear Time-Varying) MAS (Multi-Agent Systems) with heterogeneous time-varying disturbances under a fixed, connected, and undirected communication network. All the agents can collect only relative state information from their neighborhoods. To achieve synchronization of the MAS, an integral control scheme is proposed based on relative state information between agents.

Sleep Disturbance and Cancer (수면 장애와 암)

  • Ban, Woo Ho;Lee, Sang Haak
    • Sleep Medicine and Psychophysiology
    • /
    • v.20 no.1
    • /
    • pp.10-14
    • /
    • 2013
  • Sleep disturbances are commonly encountered problems in cancer patients. Sleep has a role in maintenance of immunity, metabolism, and quality of life but little has been known about the prevalence, risk factors, and effects on prognosis of sleep disturbances in patients with cancer. Also little attention has been made on proper assessment and management of sleep disorders in these patients. Recently, there have been some reports that sleep disorders are related with development of many cancers such as breast, colorectal, prostate, and endometrial cancers. An intermittent hypoxia and a disruption of circadian rhythm are considered as one of the possible mechanisms of cancer developments. More aggressive evaluation and meticulous management of sleep disturbances in cancer patients are essential to improve quality of life as well as prognosis.

Reaction Wheel Disturbance Reduction Method Using Disturbance Measurement Table

  • Cheon, Dong-Ik;Jang, Eun-Jeong;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • Momentum changing actuators like reaction wheels and control moment gyros are generally used for spacecraft attitude control. This type of actuators produces force and torque disturbances. These disturbances must be reduced since they degrade the quality of spacecraft attitude control. Major disturbances are mainly due to static and dynamic imbalances. This paper gives attention to the reduction of the static and dynamic imbalance. Force/torque measurement system is used to measure the disturbance of the test reaction wheel. An identification method for the location and magnitude of the imbalance is suggested, and the corrections of the imbalance are performed using balancing method. Through balancing, the static and dynamic imbalance is remarkably reduced.