• Title/Summary/Keyword: Disturbance Observer(DOB)

Search Result 80, Processing Time 0.032 seconds

Robust Control of Flexible Joint Robot Using ISMC and IDA-PBC (ISMC와 IDA-PBC를 이용한 유연관절로봇의 강인제어)

  • Asignacion, Abner Jr.;Park, Seung-kyu;Lee, Min-wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1203-1211
    • /
    • 2017
  • This paper proposes a robust controller for flexible joint robots to achieve tracking performance and to improve robustness against both matched and mismatched disturbances. The proposed controller consists of a disturbance observer(DOB), passivity-based controller, and integral sliding mode controller(ISMC) in a backstepping manner. The DOB compensates the mismatched disturbance in the link-side and formulates the reference input for the motor-side controller. Interconnection and damping assignment passivity-based controller (IDA-PBC) performs tracking control of motor-side, and it is integrated to nominal control of ISMC to guarantee the over-all stability of the nominal system, while, matched disturbances are decoupled by the discontinuous control of ISMC. In the design of the link-side controller, PD type impedance controller is designed with DOB and this leads the continuous control input which is suitable to the reference input for the motor-side.

Error-Based Modified Disturbance Observer(EM-DOB) for Optical Disk Drive Systems (고배속 광디스크 드라이브를 위한 수정된 구조를 가진 외란 관측기)

  • Kim, Il-Han;Kim, Hong-Rok;Choi, Young-Jin;Suh, Il-Hong;Chung, Wan-Kyun;Park, Myoung-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2031-2033
    • /
    • 2002
  • 고 배속 광디스크 드라이브(ODD) 시스템에서 위치제어 성능을 향상시키기 위해서는 디스크의 면 진동과 수평 진동과 같은 외란에 의한 오차를 감소 시켜야만 한다. 따라서 하드디스크를 포함한 여러 분야에서 뛰어난 외란 제거 성능을 보이고 있는 외란 관측기는 좋은 대안이 될 수 있다. 그러나 ODD 같은 양산용 전자제품에 외란 관측기를 구현하기 위해서는 별도의 계산 장치가 필요하고, 출력신호를 직접 Feedback 신호로 활용해야 하는 경우가 발생한다. 본 논문에서는 ODD 시스템의 외란을 제거하기 위한 수정된 구조를 가지는 오차를 기초로 한 외란관측기(Error Based Modified Disturbance Observer, EM-DOB)를 제안한다. EM-ROB 시스템은 DOB 시스템에 비해 그 구조가 더욱 간편하고 쉽게 구현 할 수 있다는 장점을 가진다. 그리고 제안한 EM-DOB 시스템의 특성을 연구하고 실험을 통해서 EM-DOB의 효용성을 입증하였다.

  • PDF

Stabilizing Water Leveling System Using Modified PI Controller (수정된 PI 제어기를 이용한 수위 제어)

  • Moon, Sungwoong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.131-136
    • /
    • 2017
  • In this study, we design a controller that regulates the water leveling system which suffers from the disturbance. A number of control techniques have been reported which can reduce the amplitude of disturbance. But due to input-delay, these methods do not perform as expected. To overcome the problem, this paper introduces a filter and proposes a proportional and integral (PI) controller that combined with the filter (modifed PI controller). Moreover, we combine the controller with disturbance observer (DOB) that can estimate and eliminate disturbance. The proposed controller and combined the controller with DOB are tested using MATLAB.

Analysis of a Time-constant Effect in the Q-filter for Designing a Disturbance Observer: Balancing Control of a Single-wheel Robot (외란관측기 설계를 위한 Q필터 시정수 영향 분석 : 외바퀴 로봇의 균형 제어 응용)

  • Lee, Sangdeok;Jung, Seul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.123-129
    • /
    • 2016
  • Disturbance Observer(DOB) based control is considered for the purpose of the balancing performance enhancement in a single-wheel robot. Design of DOB can be folded into two parts, the inverse model of the plant and the Q-filter. The inverse model is derived from the inverted stick model and a Q-filter is designed to stabilize the inverse model. In this paper, a Q31 filter is designed and its effect is evaluated by experimental studies. The time constant provides a complimentary characteristic between the disturbance suppression and the sensor noise immunity. Therefore, suitable selection of the time-constant must be considered. Comparative experiments are conducted to investigate the control performances when three different Q filters are respectively applied in the DOB. Through the analysis of the experimental results, a time constant is designed to have a proper value in the design of DOB for balancing control of a single-wheel robot.

Power Quality Improvement for Grid Connected Inverters under Distorted and Unbalanced Grids

  • Kim, Hyun-Sou;Kim, Jung-Su;Kim, Kyeong-Hwa
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1578-1586
    • /
    • 2016
  • A power quality improvement scheme for grid connected inverters, even in the presence of the disturbances in grid voltages due to harmonic distortions and three-phase imbalance, is presented for distributed generation (DG) power systems. The control objective is to force the inverter currents to follow their references with robustness even under external disturbances in grid voltages. The proposed scheme is realized by a disturbance observer (DOB) based current control scheme. Since the uncertainty in a system can be effectively canceled out using an estimated disturbance by the DOB, the resultant system behaves like a closed-loop system consisting of a disturbance-free nominal model. For experimental verification, a 2 kVA laboratory prototype of a grid connected inverter has been built using a digital signal processor (DSP) TMS320F28335. Through comparative simulations and experimental results under grid disturbances such as harmonic distortion and imbalance, the effectiveness of the proposed DOB based current control scheme is demonstrated.

Disturbance Rejection and Attitude Control of the Unmanned Firing System of the Mobile Vehicle (이동형 차량용 무인사격시스템의 외란 제거 및 자세 제어)

  • Chang, Yu-Shin;Keh, Joong-Eup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.64-69
    • /
    • 2007
  • Motion control of the system is a position control of motor. Motion control of an uncertain robot system is considered as one of the most important and fundamental research directions in the robotics. Some distinguished works using linear control, adaptive control, robust control strategies based on computed torque methodology have been reported. However, it is generally recognized within the control community that these strategies suffer from the following problems : the exact robot dynamics are needed and hard to implement, the adaptive control cannot guarantee the performance during the transient period for adaptation under the variation, the robust control algorithms such as the sliding mode control need information on the bounds of the possible uncertainty and disturbance. And it produces a large control input as well. In this dissertation, a motion control for the unmanned intelligent robot system using disturbance observer is studied. This system is affected with an impact vibration disturbance. This paper describes a stable motion control of the system with the consideration of external disturbance. To obtain the stable motion independently against the external disturbance, the disturbance rejection is strongly required. To address the above issue, this paper presents a Disturbance OBserver(DOB) control algorithm. The validity of the suggested DOB robust control scheme is confirmed by several computer simulation results. And the experiments with a motor system is performed to give the validity of applicability in the industrial field. This results make the easier implementation of the controller possible in the field.

Grid Voltage Estimation Scheme without Phase Delay in Voltage-sensorless Control of a Grid-connected Inverter (전압센서를 사용하지 않는 계통연계 인버터의 제어 및 위상지연을 개선한 계통전압 추정 기법)

  • Kim, Hyun-Sou;Kim, Kyeong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.89-93
    • /
    • 2017
  • This study proposes a grid voltage estimation scheme without a phase delay in the voltage-sensorless control of a grid-connected inverter to enhance its economic feasibility, such as manufacturing cost and system complexity. The proposed scheme estimates grid voltages using a disturbance observer (DOB)-based current controller to control the grid-connected inverter without grid-side voltage sensors. The proposed voltage-sensorless control scheme can be applied successfully to grid-connected inverters, which should be operated with synchronization to the grid, considering the phase angle of the grid can be effectively detected through estimating the grid voltages by DOB. However, a problem associated with the phase delay in estimated grid voltages remains because the DOB has dynamic behavior similar to low-pass filter. Hence, the estimated grid voltages are compensated by a phase lead compensator to overcome the limitation. The effectiveness of the proposed control and estimation schemes is proven through simulations and experiments using a 2 kVA prototype inverter.

Design of Robust High-Speed Motion Controller with Actuator Saturation and Its Application to Precision Positioning System (구동기 포화가 있는 견실 고속 온동 제어기 설계 및 정밀 위치 결정 시스템에의 적용)

  • Park, Hyun-Raek;Kim, Bong-Keun;Shh, Il-Hong;Chung, Wan-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.768-776
    • /
    • 2000
  • A robust high-speed motion controller is proposed. The proposed controller consists of the proximate time optimal servomechai는 (PTOD) for high-speed motion, disturbance observer (DOB) for robustness, friction compensator, and saturation handling element, In the proposed controller, DOB basically provides the chance to apply PTOS to non-double integrator systems by drastically reducing disturbances as well as unwanted signals due to difference between real system and the double integrator model. But, in DOB-based systems, if control input is saturated due to control input PTOS and/or DOB, overall system stability cannot be guaranteed. To solve this problem, ribust stability, when the control input is saturated. Eventually, a simple saturation handling element is inserted to maintain internal stability of overall system. Also, we explain the our two saturation handling methods, Additional Saturation Element (ASE_ and Self Adjusting Saturation (SAS), are the equivalent solutions of the saturation problem to maintain internal stability. The stability and performance of the proposed controller are verified through numerical simulations and experiments using a precision linear motor system.

  • PDF

Improvement of Tracking Servo Performance in SIL based Near-field Recording using Disturbance Observer (외란 관측기를 이용한 근접장 기록 시스템의 트랙킹 서보 성능 향상)

  • Kang, Min-Seok;Kim, Joong-Gon;Shin, Won-Ho;Jeong, Jun;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.609-612
    • /
    • 2008
  • The solid immersion lens (SIL) based near-field recording (NFR) system is considered as one of the high density optical data storage system. For the NFR servo system, tracking servo control is a difficult technology to maintain extremely small gap between SIL and media within one twentieth. This is because the track pitch is decreased for increasing the recording density. In this paper, we propose disturbance observer (DOB) and internal model principle (IMP) for disturbance rejection due to eccentricity of disk. The performance of tracking controller using DOB is increased by about 85%, 94%, 97% using Q filters that have bandwidths of 50Hz, 125Hz, 250Hz, respectively. Moreover, IMP based controller is effectively reduced the residual error.

  • PDF

Robust Tracking and Human-Compliance Control Using Integral SMC and DOB (적분슬라이딩모드와 DOB를 이용한 강인추종 및 인간순응 로봇제어)

  • Asignacion Jr., Abner;Kim, Min-chan;Kwak, Gun-Pyong;Park, Seung-kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.416-422
    • /
    • 2017
  • The robot control with safety consideration is required since robots and human work together in the same space more frequently in these days. For safety, robots must have compliance to human force and robust tracking performance with high impednace for the nonhuman disturbances. The novel idea is proposed to achieve the compliance and high impedance with one controller structure. For the compliance, the ISMC(Integral Sliding Mode Control) and HDOB(Human Disturbance Observer) The human force is identified by using the human band pass filter and its output is sent to the sliding surface. The sliding mode dynamic is affected by human disturbance and the compliance for human is achieved. The disturbances besides human frequencies are decoupled by the ISMC and the robust tracking is achieved. The additional LDOB(Low Frequency Disturbance Observer) decreases the maxim nonlinear gain and leads low chattering. The introduction of human disturbance into the sliding mode dynamic is the main novel idea of this paper.