• Title/Summary/Keyword: Disturbance Fault

Search Result 102, Processing Time 0.026 seconds

Power Plant Fault Monitoring and Diagnosis based on Disturbance Interrelation Analysis Graph (교란들의 인과관계구현 데이터구조에 기초한 발전소의 고장감시 및 고장진단에 관한 연구)

  • Lee, Seung-Cheol;Lee, Sun-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.413-422
    • /
    • 2002
  • In a power plant, disturbance detection and diagnosis are massive and complex problems. Once a disturbance occurs, it can be either persistent, self cleared, cleared by the automatic controllers or propagated into another disturbance until it subsides in a new equilibrium or a stable state. In addition to the Physical complexity of the power plant structure itself, these dynamic behaviors of the disturbances further complicate the fault monitoring and diagnosis tasks. A data structure called a disturbance interrelation analysis graph(DIAG) is proposed in this paper, trying to capture, organize and better utilize the vast and interrelated knowledge required for power plant disturbance detection and diagnosis. The DIAG is a multi-layer directed AND/OR graph composed of 4 layers. Each layer includes vertices that represent components, disturbances, conditions and sensors respectively With the implementation of the DIAG, disturbances and their relationships can be conveniently represented and traced with modularized operations. All the cascaded disturbances following an initial triggering disturbance can be diagnosed in the context of that initial disturbance instead of diagnosing each of them as an individual disturbance. DIAG is applied to a typical cooling water system of a thermal power plant and its effectiveness is also demonstrated.

Eigenstructure Assignment Method for Disturbance Suppression and Fault Isolation (외란 억제 및 고장 분리를 위한 고유구조 지정기법)

  • Seo, Young-Bong;Park, Jae-Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.357-362
    • /
    • 2002
  • The underlying principle of fault detection via unknown input observer is to make the state estimation error independent of disturbances(or unknown inputs). In this paper, we present a systematic method that can exactly assign the eigenstructure with disturbance suppression and fault isolation capability. A desired eigenstructure for both fault isolation and disturbance suppression is obtained by an optimization method. For the dual purposes, terms for fault isolation and far disturbance suppression are included in the employed objective function for the optimization. The proposed scheme is applied to a simple example to confirm the usefulness of the method.

Eigenstructure Assignment Using Optimization Method for Disturbance Suppression and Fault Isolation (최적화 기법을 이용한 외란 억제 및 고장 분리에 대한 고유구조 지정)

  • 서영봉;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.14-14
    • /
    • 2000
  • In this paper, we present a systematic optimization method that has flexibility of exact assignment of eigenstructure with disturbance suppression and fault isolation capability. The eigenstructure for fault isolation is assigned by the inclusion of a eigenstructure assignment problem in the objective function as well as a disturbance suppression term is also included in the objective function enhance the robustness of the control scheme. The proposed scheme is applied to designing asimple system to confirm the usefulness of the scheme.

  • PDF

SIMULTANEOUS FAULT DETECTION AND CONTROL OF LINEAR TIME-INVARIANT SYSTEM VIA DISTURBANCE OBSERVER-BASED CONTROL APPROACH

  • PANG, GUOCHEN;JIAO, YU;ZHANG, HONGZI;CHEN, XIANGYONG;ZHANG, ANCAI;QIU, JIANLONG
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.47-59
    • /
    • 2022
  • This paper concerns the problem of simultaneous fault detection and disturbance reject control(SFDDRC) for a class of linear time-invariant system. In the framework of fault detection, residual generators are required to be robust to disturbances existing in the system. Different from most of the existing simultaneous fault and control(SFDC) methods, SFDDRC rejects the influences of disturbances on residual generators by disturbance observer-based control(DOBC). This not only effectively improves the accuracy of fault detection, but also solves the problem that most of the existing SFDC methods require that the disturbance must be bounded. Finally, a numerical example is given to verify the validity of the method.

A case study on robust fault diagnosis and fault tolerant control (강인한 고장진단과 고장허용저어에 관한 사례연구)

  • Lee, Jong-Hyo;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.130-130
    • /
    • 2000
  • This paper presents a robust fault diagnosis and fault tolerant control lot the actuator and sensor faults in the closed-loop systems affected by unknown inputs or disturbances. The fault diagnostic scheme is based on the residual set generation by using robust Parity space approach. Residual set is evaluated through the threshold test and then fault is isolated according to the decision logic table. Once the fault diagnosis module indicates which actuator or sensor is faulty, the fault magnitude is estimated by using the disturbance-decoupled optimal state estimation and a new additive control law is added to the nominal one to override the fault effect on the system. Simulation results show that the method has definite fault diagnosis and fault tolerant control ability against actuator and sensor faults.

  • PDF

Satellite Attitude Control with a Modified Iterative Learning Law for the Decrease in the Effectiveness of the Actuator

  • Lee, Ho-Jin;Kim, You-Dan;Kim, Hee-Seob
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.87-97
    • /
    • 2010
  • A fault tolerant satellite attitude control scheme with a modified iterative learning law is proposed for dealing with actuator faults. The actuator fault is modeled to reflect the degradation of actuation effectiveness, and the solar array-induced disturbance is considered as an external disturbance. To estimate the magnitudes of the actuator fault and the external disturbance, a modified iterative learning law using only the information associated with the state error is applied. Stability analysis is performed to obtain the gain matrices of the modified iterative learning law using the Lyapunov theorem. The proposed fault tolerant control scheme is applied to the rest-to-rest maneuver of a large satellite system, and numerical simulations are performed to verify the performance of the proposed scheme.

A Study on the robust fault diagnosis and fault tolerant control method for the closed-loop control systems (폐회로 제어시스템의 강인한 고장진단 및 고장허용제어 기법 연구)

  • Lee, Jong-Hyo;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.138-145
    • /
    • 2000
  • This paper presents a robust fault diagnosis and fault tolerant control method for the control systems in closed-loop affected by unknown inputs or disturbances. The fault diagnostic scheme is based on the disturbance-decoupled state estimation using a 2-stage state observer for state, actuator bias and sensor bias. The estimated bias show the occurrence time, location and type of the faults directly. The estimated state is used for state feedback to achieve fault tolerant control against the faults. Simulation results show that the method has definite fault tolerant ability against actuator and sensor faults, moreover, the faults can be detected on-line, isolated and estimated simultaneously.

  • PDF

Fault Tolerant Control Strategy for Four Wheel Steer-by-Wire Systems (4륜 조향을 이용한 Steer-by-Wire 시스템의 고장 허용 제어 전략)

  • Seonghun Noh;Baek-soon Kwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.13-20
    • /
    • 2023
  • This paper presents a fault tolerant control strategy for Steer-by-Wire (SbW) systems. Among many problems to be solved before commercialization of SbW systems, maintaining reliability and fault tolerance in such systems are the most pressing issues. In most previous studies, dual steering motors are used to achieve actuation redundancy. However, relatively few studies have been conducted to introduce fault tolerant control strategies using rear wheel steering system. In this work, an actuator fault in front wheel steering is compensated by active rear wheel steering. The proposed fault tolerant control algorithm consists of disturbance observer and sliding mode control. The fault tolerant control performance of the proposed approach is validated via computer simulation studies with Carsim vehicle dynamics software and MATLAB/Simulink.

Design of a Fuzzy Model Based Reduced Order Unknown Input Observer for a Class of Nonlinear Systems (비선형계를 위한 퍼지모델 기반 감소차수 미지입력관측자 설계)

  • Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1247-1253
    • /
    • 2008
  • A design method of a T-S fuzzy model based reduced order nonlinear unknown input observer(NUIO) is presented. The fuzzy NUIO is designed based on the parallel distributed compensation(PDC) concept. It consists of a number of the linear UIOs, each of which is designed for each local linear model in the T-S fuzzy model of a class of nonlinear systems. The fuzzy NUIO provides not only the state estimates insensitive to the unknown inputs, for example, disturbances and faults etc., but also the estimates of the unknown inputs. Therefore, It can be employed in the state feedback control and disturbance rejection control of a class of nonlinear systems with unknown disturbances. It also applied to the robust residual generation for the fault detection and isolation systems and to the design of fault tolerant control systems. As an example, the NUIO is applied to an inverted pendulum system to show the state and disturbance estimation performance and to illustrate the fuzzy reduced order NUIO design method.

Disturbance observer based anti-disturbance fault tolerant control for flexible satellites

  • Yadegari, Hamed;Khouane, Boulanouar;Yukai, Zhu;Chao, Han
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.459-475
    • /
    • 2018
  • In the field of aerospace engineering, accurate control of a spacecraft's orientation is often very important to mission success. Therefore, attitude control is a technically plentiful and extensively studied subject in controls literature during recent decades. This investigation of spacecraft attitude control is assumed to address two important aspects of the problem solutions. One sliding mode anti-disturbance control for utilization of faulty actuator components and another one disturbance observer based control to improve the pointing accuracy in the absence of anti-vibration equipment for the elastic appendages like a solar panel. Simultaneous occurrence of vibration due to flexible appendages and reaction degradation due to failure in attitude actuators complicates this case. The advantage of this method is acquisition proper control by the combination of disturbance observer and sliding mode compensation that form a fault tolerant control for the concerned satellite attitude control system. Furthermore, the proposed composite method indicates that occurrence the failure in actuators and even elastic solar panel vibration effect may be handled directly without reconfiguring the control components or providing piezoelectric devices. It's noteworthy, attitude quaternion and angular velocity commands are robustly tracked via controllers to become inclined to zero.