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SIMULTANEOUS FAULT DETECTION AND CONTROL OF
LINEAR TIME-INVARIANT SYSTEM VIA DISTURBANCE

OBSERVER-BASED CONTROL APPROACH†
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Abstract. This paper concerns the problem of simultaneous fault detec-
tion and disturbance reject control(SFDDRC) for a class of linear time-
invariant system. In the framework of fault detection, residual generators
are required to be robust to disturbances existing in the system. Different
from most of the existing simultaneous fault and control(SFDC) methods,
SFDDRC rejects the influences of disturbances on residual generators by
disturbance observer-based control(DOBC). This not only effectively im-
proves the accuracy of fault detection, but also solves the problem that
most of the existing SFDC methods require that the disturbance must be
bounded. Finally, a numerical example is given to verify the validity of the
method.
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1. Introduction

Along with the ever-increasing demands for high performance and high prod-
uct quality, industrial technology processes [1],[2],[3],[4]are becoming more com-
plex.So, the problems of fault detection [5],[6],[7],[8] and fault tolerant[9],[10],[11]
are very important for the modern control systems. Because the separately de-
sign on control and detection units increases overall complexity, it is very urgent
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to unify the two units into a single one. Therefore, the problem of SFDC has
attracted a lot of attention in the last couple of decades([12]-[18]). In [12], the
problem of SFDC was formulated as a mixed H2/H∞ optimization problem. In
the framework of switched systems, the fault detector/controller gains and the
supremum of quantizer range were derived by a convex optimized method in[16].
In multi-agent network system,[18] investigated the problem of distributed simul-
taneous fault detection and leader-following consensus control. In the framework
of SFDC, the residuals are required to be robust to disturbances in the system.
This makes the residuals have better sensitivity to faults, which can effectively
detect the faults existing in the system. When studying the effects of rejecting
disturbances, most are based on H∞ control method in SFDC. The H∞ control
method is widely used and proved to be effective. But it is the worst case based
design where the nominal performance is sacrificed to achieve better robustness.
Moreover, the disturbance must be assumed to be bounded.

The DOBC method proposed in the late 1980s [20] has been applied to many
control fields due to its improved anti-disturbance ability. [19] used disturbance
observer to improve the access time in magnetic hard drive servo systems with
rotary actuators. In [21], a novel DOBC method has been proposed by ap-
propriately designing a disturbance compensation gain for nonlinear MAGLEV
suspension systems. In [22], the DOBC approach was proposed in PWM-based
DC-DC buck power converters. In [23], the DOBC was used to suppress the flex-
ible dynamics and parameter uncertainties in a flexible air-breathing hypersonic
vehicle. DOBC is one of the most widely accepted and applied disturbance and
uncertainty estimation and attenuation (DUEA). Its fundamental idea is that
an observation mechanism is designed to estimate disturbances or uncertainties
(or both of them) and corresponding compensation is then generated by making
use of the estimate. In this setting, the influence of disturbance on the system
is effectively suppressed.

In this paper, the SFDDRC method is constructed based on DOBC and
SFDC, where it is very effective in overcoming the effects of disturbances on fault
detection. Based on designing observation mechanism to estimate disturbance
and generate a compensation, the effect of disturbance on fault detection is
effectively suppressed. Therefore, the faults in the system can be effectively
detected. Moreover, it also solves the problem that most of the existing SFDC
methods require that the disturbance must be bounded.

The rest of the paper is organized as follows: the description of the problem is
given in Section 2 . Sections 3-4 contains the main results and thresholds com-
putation, respectively. Section 5 contains the simulation results for the proposed
algorithm. Finally, some concluding remarks are included in Section 7.

Notation: The notation X ≥ Y (respectively X > Y ) where X and Y are
symmetric matrices, means that the matrix X − Y is positive semi-definite (re-
spectively, positive definite); AT denotes the transposed matrix of A; sym(X)
means X +XT;
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2. Preliminaries and problem formulation

Consider the following systems with disturbances
ẋ(t) = A0x(t) +B0(u(t) + d(t)) +Bf0f(t)

y(t) = C0x(t) +Dd0d(t) +Df0f(t) (2.1)
where x(t) ∈ Rn is the state, f(t) ∈ Rq is possible fault, u(t) ∈ Rm is the
control input, and y(t) ∈ Rp is the measurement output. A0, B0, Bf0, C0, Dd0

and Df0 are assumed to be known constant matrices of appropriate dimensions.
The disturbance d(t) ∈ Rr in the control input path can be formulated by

the following exogenous system:
ẇ(t) = Ww(t)

d(t) = V w(t). (2.2)
where w(t) ∈ Rw, W and V are matrices with corresponding dimensions.

From (2.2), it can be seen that the disturbance d(t) is unbounded. However,
many kinds of disturbances in engineering which are described by (2.2) are not
bounded. For example, harmonic disturbance with known frequency ω but un-
known phase and magnitude. This leads to the widely used H∞ control method
(d(t) is assumed to be bounded) does not stabilize the system and effectively
rejects the influence of disturbance on SFDC. Therefore, it is necessary to design
a new detector/controller to solve this problem.

Firstly, the following composite systems are given by (2.1) and (2.2).
ż(t) = Az(t) +Bu(t) +Bff(t)

y(t) = Cz(t) +Df0f(t) (2.3)

where z(t) :=
[
x(t)
w(t)

]
, A :=

[
A0 B0V
0 W

]
, B :=

[
BT

0 0
]T, Bf :=

[
BT
f0 0

]T,
C :=

[
C0 Dd0V

]
.

The detector/controller for both x(t) and ω(t) is designed as
˙̂z(t) = Aẑ(t) +Bu(t) + Lr(t)

ŷ(t) = C0ẑ(t)

r(t) = y(t)− ŷ(t)

u(t) = −d̂(t) +Kx̂(t)

d̂(t) = V ω̂(t)

(2.4)

where ẑ(t) :=
[
x̂(t)
ω̂(t)

]
, and L is the detector/controller gain to be determined.

The estimation error e(t) := z(t) − ẑ(t) =

[
x(t)− x̂(t)
ω(t)− ω̂(t)

]
=

[
ex(t)
eω(t)

]
is

obtained by
ė(t) = Ae(t) +Bff(t)− Lr(t). (2.5)
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The residual signal is governed by

r(t) = y(t)− ŷ(t) = Ce(t) +Df0f(t). (2.6)

Combining estimation error (2.1) and (2.5) yields
˙̄x(t) = Āx̄(t) + B̄ff(t)

r(t) = C̄x̄(t) +Df0f(t) (2.7)

where ˙̄x(t) =

 x(t)
ex(t)
eω(t)

, Ā =

 A0 +B0K −BoK B0V
0 A0 − L1C0 B0V − L1C0

0 −L2C0 W − L2Dd0V

,
B̄f =

 Bf0
Bf0 − L1Df0

−L2Df0

, C̄ =
[
0 C0 Dd0V

]
and L =

[
L1

L2

]
.

The basic idea of SFDDRC can be illustrated by Fig. 1, where G, u, d, f , y, r,
d̂ represent the real physical plant, the control input, the external disturbance,
the fault signal to be detected, the system output, the residual signal, and the
estimate of external disturbance, respectively.

From Fig. 1, it is shown that the detector/controller with disturbance esti-
mation and compensation mechanism is not activated under without the distur-
bance d in system. For this resaon, the stability of the system will not be affected.
In addition, when the system is affected by disturbances, the observation mech-
anism is activated to estimate interference. The corresponding compensation is
then generated by using the estimate value. Hence, the influence of disturbance
on fault detection is overcome.

 detector/controller

Fig. 1: Conceptual diagram of SFDDRC

The SFDDRC problem is that of designing a detector/controller (2.4) such
that the systems (2.7) are stable, and the effects of disturbance on residual
signal r(t) is minimized, whereas the effects of fault on residual signal r(t) are
maximized. More specifically, the effects of fault on residual signal is replaced
by a standard H∞ model matching problem as follows

∥Wf −Grf (s)∥ < γ (2.8)
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where Grf (s) = C̄(sI − Ā)−1B̄f + Df0. The Wf is assumed as the following
form:

Wf =

[
AF BF
CF DF

]
(2.9)

where AF is a Hurwitz matrix. Then
Wf −Grf (s) = C̃(sI − Ã)−1B̃ + D̃ (2.10)

where [
Ã B̃

C̃ D̃

]

=


AF 0 BF

0
A0 +B0K −BoK B0V

0 A0 − L1C0 B0V − L1C0

0 −L2C0 W − L2Dd0V

Bf0
Bf0 − L1Df0

−L2Df0

CF 0 C0 Dd0V DF −Df0

 .(2.11)
It can be seen from the above conditions that the residual signal r(t) robustly

tracks the filtered version of the fault signal Wff .
The following lemmas are used in the next section:

Lemma 2.1. (Bounded Real Lemma) For the following systems:
ẋ(t) = Ax(t) +Bω(t)

z(t) = Cx(t) +Dω(t), (2.12)
H∞ performance, with γ > 0 is equivalent to the existence of P = PT > 0
satisfying:  ATP + PA PB CT

∗ −γ2I DT

∗ ∗ −I

 < 0. (2.13)

3. Simultaneous Fault Detection and Disturbance Rejection Control

In this section, the LMI formulation for solving SFDDRC problem would
be given. Firstly, the disturbance rejection control is transformed into LMI
feasibility constraints in the following:
Lemma 3.1. Consider the systems (2.1) with disturbance (2.2) and f(t) = 0.
If there exist P1 and R1 satisfying

sym(A0P1 +B0R1) < 0 (3.1)

and P2 =

[
P21 0
0 P22

]
> 0, R2 =

[
R21

R22

]
satisfying[

sym(P21A0 −R21C0) P21B0V −R21Dd0V − CT0 R
T
22

∗ sym(P22W −R22Dd0V )

]
< 0, (3.2)

then the closed-loop systems (2.7) under detector/controller (2.4) with K =
R1Q

−1
1 and L = P−1

2 R2 are asymptotically stable.
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Proof. Let V1(x(t), t) = xT(t)Q1x(t) where Q1 = P−1
1 . Along with the trajecto-

ries of (2.1) with disturbance (2.2) and f(t) = 0, we have

V̇1(x(t), t) = xT(t)(A0 +B0K)TQx(t) + xT(t)Q(A0 +B0K)x(t). (3.3)

It can be verified that V̇1(x(t), t) < 0 is equivalent to

(A0 +B0K)TQ+Q(A0 +B0K) < 0. (3.4)

Now, pre- and post multiplication of (3.4) by P , inequality (3.1) is obtained.
Denote V2(e(t), t) = eT(t)P2e(t). Similarly, V̇2(e(t), t) < 0 is equivalent to

(3.2) holds.
Let η1, η2 > 0. Following (3.1) and (3.2), it can be verified that V̇1(x(t), t) ≤

−η1∥x∥2 and V̇2(e(t), t) ≤ −η2∥e∥2. Define V (x(t), e(t), t) = V1(x(t), t)+η0V2(e(t), t)
where η0 is a proper constant. The next proof of this theorem is similar to that
of Theorem 1 of [26], so the closed-loop systems (2.7) are asymptotically stable.

After getting the controller that stabilizes the systems, the constraints for
maximizing the effect of fault on residual signal will be given below. �

Theorem 3.2. If there exist symmetric positive-definite matrices PF , Q, P21,
P22 and matrices R21, R22 and a prescribed positive constant γ satisfying

sym(PFAF ) 0 0 0 PFBF CT
F

∗ Λ22 −Q1B0K Q1B0V Q1Bf0 0
∗ ∗ Λ33 Λ34 Λ35 −CT

0

∗ ∗ ∗ Λ44 −R22Df0 −V TDT
d0

∗ ∗ ∗ ∗ −γ2I DT
F −DT

d0

∗ ∗ ∗ ∗ ∗ −I

 < 0.

(3.5)
where

Λ22 = sym(Q1A0 +Q1B0K),

Λ33 = sym(P21A0 −R21C0),

Λ34 = P21B0V −R21Dd0V − CT
0 R

T
22,

Λ35 = P21Bf0 −R21Df0,

Λ44 = sym(P22W −R22Dd0V ), (3.6)

then the closed-loop systems (2.7) with gain L =

[
R21P

−1
21

R22P
−1
22

]
are stable and the

condition (2.10) holds.

Proof. Define

P̃ =


PF 0 0 0
0 Q 0 0
0 0 P21 0
0 0 0 P22

 > 0. (3.7)
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Applying Lemma 1 to (2.7), the closed-loop systems (2.7) is stable and the
condition (2.10) holds are equivalent to sym(P̃ Ã) P̃ B̃ C̃T

∗ −γ2I D̃T

∗ ∗ −I

 < 0. (3.8)

Using (2.11) and (3.7) to calculate (3.8), we have

sym(P̃ Ã) =


sym(PFAF ) 0 0 0

∗ Λ22 −QB0K QB0V
∗ ∗ Λ33 Λ34

∗ ∗ 0 Λ44

 (3.9)

and

sym(P̃ B̃) =


PFBF
Bf0P

P21Bf0 −R21Df0

∗

 . (3.10)

Bring (3.9) and (3.10) into (3.8), (3.5) can be obtained. Then by selecting

L =

[
R21P

−1
21

R22P
−1
22

]
, the closed-loop systems (2.7) are stable and the condition

(2.10) holds. �
Remark 3.1. The detector/controller design can be obtained separately as
follows:

• Solve (3.2) to obtain K;
• Compute the observer gain L via (3.5)
• Construct the detector based on (2.4).

4. Thresholds Computation

Once the observer gain L is obtained, the next step is to evaluate the residual
signal and compare it with threshold value to detect the presence of fault in the
system. The residual evaluation function Jr(t)(t) is chosen as

Jr(t) =

√√√√1

t

st∑
s=s0

rT(s)r(s)

where s0 implies the initial evaluation time instant and st denotes the whole
evaluation time steps.

The threshold value is chosen as
Jth(t) = sup

f(t)=0

Jr(t)(t). (4.1)

Based on this, the occurrence of faults can be detected by the following logic
rule.

∥ Jr(t) ∥≤ Jth the system no alarm
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∥ Jr(t) ∥> Jth the system with alarm

5. Numerical Example

The following numerical example given in [26] is used to verify the validity of
the SDDFRC theoretical framework. The parameters of the system (2.1) are as
follows.

A0 =


0 1 0 0

6.51 24.69 33.7 35.54
0 0 0 1

−12.52 −50.1 −56 −68.5

 , B0 =


0

0.2469
0

−12.52

 ,

Bf0 =


0
0.5
0

−0.5

 , C0 =

[
1 0 0 0
0 1 1 0

]
, Dd0 =

[
1
0

]
, Df0 =

[
0
0

]
. (5.1)

Reference model parameters for residual are selected as:

AF =

[
−2 −1
0 0

]
, BF =

[
1
1

]
, CF =

[
0 1
1 0

]
, DF =

[
0
1

]
. (5.2)

The model parameters for disturbance (2.2) are selected as:

W =

[
0 5
−5 1

]
, V =

[
25
−5

]
. (5.3)

0 5 10 15 20 25 30
t

-2000

-1500

-1000

-500

0

500

1000

1500

2000

d(t)

Fig. 2: Disturbance in system

From Fig. 2, we know that the disturbance is unbounded in the system.
Therefore, the assumptions of the existing SFDC method are not satisfied, which
means that some existing SFDC methods are unable to complete the tasks of
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control and fault detection. In the framework of SFDDRC, applying the ap-
proach in Lemma 2, we can obtain

K =
[
−23.5072 −103.4239 −98.1917 0

]
(5.4)

and the controller is u(t) = −d̂(t) +Kx̂(t).
Based on Theorem 1, from obtained controller and defined parameter γ = 1.5,

it can be obtained that

L =


27.6971 −27.7981
−30.6801 30.3770
−15.9044 15.9573
31.0743 −30.7255
0.0252 0.0219
0.0023 0.0020

 . (5.5)

To demonstrate the effectiveness of the design, the fault is assumed as f(t) =
30 from t = 20 to t = 30. When there is no fault in the system, the estimation
errors for system are denoted in Fig. 3 and the state responses x(t) of the
systems are shown in Fig. 4. Fig. 3 shows the convergence to track the external
disturbance and Fig. 4 shows the stability of the closed-loop system .

0 5 10 15 20 25 30 35 40
t

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

e w(t)

Fig. 3: Estimation errors for system disturbances

By calculation, the threshold is set to 0.4465 and is indicated by the dashed
line in Fig. 5. When k = 20, system exists fault. At this point, ∥ Jr(t) ∥> Jth,
and the system generates an alarm to effectively detect the fault in the system.

6. Concluding remarks

In this paper, the method of SFDDRC has been given for a class of linear
time-invariant system. The feature of this kind of method is that it deals with
the disturbance suppression problem in SFDC problem based on DOBC method.
This effectively suppresses the influence of disturbances in the system on fault
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x3(t)
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Fig. 4: System performance using SFDDRC with disturbances

5 10 15 20 25 30 35 40
t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r(t)

Fig. 5: Solid line: residual evaluation output; dashed line: threshold

detection, thereby greatly improving the accuracy of fault detection. More-
over, the problem that the response on the disturbances in the system must be
bounded has been solved. At last, a numerical example is given to verify the
validity of the method.
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