• Title/Summary/Keyword: Disturbance Attenuation

Search Result 111, Processing Time 0.028 seconds

Gain Scheduled Control for Disturbance Attenuation of Systems with Bounded Control Input - Application to Stabilization Control (제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이득 스케쥴 제어 - 안정화 제어 응용)

  • Kang Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.88-95
    • /
    • 2006
  • In this paper, the gain-scheduled control design proposed in the previous paper has been applied to a target tracking system. In such system, it is needed to attenuate disturbance effectively as long as control input satisfies the given constraint on its magnitude. The scheduled gains are derived in the framework of linear matrix inequality(LMI) optimization by means of the MatLab toolbox. Its effectiveness is verified along with the simulation results compared with the conventional optimum constant gain and the scheduled gain control with constant Q matrix cases.

Micro-Vibration Test on a Two-Axis Gimbal Antenna System with Stepping Motors (스텝핑 모터 특성에 따른 2축 짐발 안테나 시스템의 미소진동 측정 시험)

  • Kim, Dae-Kwan;Choi, Hong-Taek;Park, Gee-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.420-424
    • /
    • 2012
  • A 2-axis gimbal system is one of main disturbance sources affecting on image jitter response of a satellite. The gimbal system can be rotated on its azimuth and elevation axes, resulting in variation of its moment of inertia and structural modes, so that generates non-linear vibration characteristics. In order to estimate the jitter response, it is an indispensable process to characterize micro-vibration disturbance of the 2-axis gimbal system. In the present research, the vibration characteristics of the 2-axis gimbal system was investigated with respect to the types of stepping motors. The micro-vibration tests were performed for 2-phase and 5-phase stepping motors. The test results show that the disturbance can be reduced with vibration attenuation ratio of 60% by replacing the 2-phase stepping motor with the 5-phase one.

  • PDF

Design of Robust Motion Controllers with Internal-Loop Compensator (내부루프 보상기를 가지는 강인 동작 제어기의 설계)

  • Kim, Bong-Geun;Jeong, Wan-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1501-1513
    • /
    • 2001
  • Disturbance observer, adaptive robust control, and enhanced internal model control are model based disturbance attenuation methods famous for robust motion controller which can satisfy desired performance and robustness of high-speed/high-accuracy positioning systems. In this paper, these are shown to be the same scheme with different parameterizations. To do this, a generalized framework, called as RIC(robust internal-loop compensator) is proposed and the conventional schemes are analyzed in the RIC framework. Through this analysis, it can be shown that there are inherent similarities between the schemes and advantages of the RIC in the viewpoint of controller design. This is verified through simulations and experiments.

Robust H Speed Controller Design for BLDC Motor (BLDC 모터의 강인한 H 속도 제어기 설계)

  • Jang, Sohyun;Jo, Nam-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.83-88
    • /
    • 2015
  • Due to low cost and high reliability, Brushless DC (BLDC) motors have been widely used in control applications such as robotics, aerospace and automobile. In the high performance control systems, it is very important to maintain the desired speed even in the face of parameter uncertainties, modeling errors, and disturbance signals. In this paper, we present an $H_{\infty}$ controller for the speed control of BLDC motors to achieve better performance of disturbance rejection. In particular, we discuss how to reduce an initial peaks of control input in the proposed $H_{\infty}$ controller. Some experimental results are provided to establish the effectiveness of the proposed method.

Design of the Robust Servo Control System for Steel Making Plant using Disturbance Observer Algorithm (DOB를 이용한 제철설비용 강인 서보 제어시스템 구현)

  • Kim, Dong-Sam;Heo, Yun-Je;Jeong, Wan-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.693-696
    • /
    • 2003
  • Among many servo control systems in steel making plant, AGC system in hot rolling mill is very important to get a accurate strip thickness for good quality. AGC (Auto Gauge Control) system controls the roll gap to maintain the required thickness by using the variation of roll force and the measure of output thickness. In this paper, a simulator of AGC system which unifies both hydraulic servo control system and AGC algorithm is suggested. After proving the concurrence of algorithms between the simulator and real system, main actuator system is added. Instead of usual PI system used in present system, DOB control scheme is applied and shows the effect of disturbance attenuation well.

  • PDF

Restoration of underwater images using depth and transmission map estimation, with attenuation priors

  • Jarina, Raihan A.;Abas, P.G. Emeroylariffion;De Silva, Liyanage C.
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.331-351
    • /
    • 2021
  • Underwater images are very much different from images taken on land, due to the presence of a higher disturbance ratio caused by the presence of water medium between the camera and the target object. These distortions and noises result in unclear details and reduced quality of the output image. An underwater image restoration method is proposed in this paper, which uses blurriness information, background light neutralization information, and red-light intensity to estimate depth. The transmission map is then estimated using the derived depth map, by considering separate attenuation coefficients for direct and backscattered signals. The estimated transmission map and estimated background light are then used to recover the scene radiance. Qualitative and quantitative analysis have been used to compare the performance of the proposed method against other state-of-the-art restoration methods. It has been shown that the proposed method can yield good quality restored underwater images. The proposed method has also been evaluated using different qualitative metrics, and results have shown that method is highly capable of restoring underwater images with different conditions. The results are significant and show the applicability of the proposed method for underwater image restoration work.

Robust Controller Design for a Stabilized Head Mirror

  • Keh, Joong-Eup;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.78-86
    • /
    • 2002
  • In this paper, LMI (Linear Matrix Inequality) based on H$\_$$\infty$/ controller for a lire of sight (LOS) stabilization system. It shows that the proposed controller has more excellent stabilization performance than that of the conventional PI-Lead controller. An H$\_$$\infty$/ control has been also applied to the system for reducing modeling errors and the settling time of the system. The LMI-based H$\_$$\infty$/ controller design is more practical in view of reducing a run-time than Riccati-based H$\_$$\infty$/ controller. This H$\_$$\infty$/ controller is available not only to decrease the gain in PI-Lead control, but also to compensate the identifications for the various uncertain parameters. Therefore, this paper, shows that the proposed LMI-based H$\_$$\infty$/ controller had good disturbance attenuation and reference input tracking performance compared with the control performance of the conventional controller under any real disturbances.

Robust and Non-fragile $H_{\infty}$ Control for Descriptor Systems with Parameter Uncertainties and Time Delay

  • Kim, Jong-Hae;Oh, Do-Chang
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • This paper describes a robust and non-fragile $H_{\infty}$ controller design method for descriptor systems with parameter uncertainties and time delay, as well as a static state feedback controller with multiplicative uncertainty. The controller existence condition, as well as its design method, and the measure of non-fragility in the controller are proposed using linear matrix inequality(LMI) technique, which can be solved efficiently by convex optimization. Therefore, the presented robust and non-fragile $H_{\infty}$ controller guarantees the asymptotic stability and disturbance attenuation of the closed loop systems within a prescribed degree in spite of parameter uncertainties, time delay, disturbance input and controller fragility.

Control System Design for Precision Grinding (정밀 연삭가공을 위한 제어시스템 설계)

  • 오창진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.453-458
    • /
    • 2000
  • Design of an in-process feedback control system has been studied for precision grinding. A grinding system consists of a grinding tool, a turn table and a disk-shaped workpiece on the table is taken as an object. A grinding process model has been deduced which gives some reasoning about the process errors. In the control system the tool position is actively controlled by an electro-magnetic actuator in-process. The ground error is feedback to compose a closed-loop control system and an optimal PID controller is applied. Some control performances such as transient response and disturbance such as transient response and disturbance attenuation have been examined, which convinces the effectiveness of the control. Some methods for implementation of the control. Some methods for implementation of the control have been suggested from a standpoint of practical application.

  • PDF

Partial state feedback $H_{\infty}$ control of the two-mass resonant system having IM (2관성 공진계를 갖는 유도 전동기의 부분적인 상태 보상을 이용한 $H_{\infty}$ 제어)

  • 강석진;김진수;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.58-62
    • /
    • 1998
  • In the industrial motor drive systems, a torsional vibration is often generated because of the elastic elements in torque transmission. One of general methods for the system is H$\infty$ controller to suppress the torsional vibration and reject the torque disturbance. vibration and reject the torque disturbance. Moreover, the two-degrees-of-freedom controller, which includes the H$\infty$ controller, is designed in order to improve the command following property. In this paper, we propose a new H$\infty$ controller with partial state feedback. This method having simple structure satisfies with the fast command following property and the attenuation of disturbances and vibrations simultaneously, just like the complicated TDOF H$\infty$ controller

  • PDF