• 제목/요약/키워드: District heating and cooling system

검색결과 49건 처리시간 0.026초

지역난방수 환수 승온방식의 태양열 지역냉난방 시스템 분석 (A Study on the Design and Analysis of District Solar Heating and Cooling System with Preheating of Returning District Heating Water)

  • 백남춘;신우철;이진국;윤응상;윤석만
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.433-437
    • /
    • 2005
  • This study was carried out the design and analysis of solar thermal system with preheating of returning district heating water for the Chung-ju district heating and cooling system. Two different types of solar collectors are used for this system. TRNSYS simulation program was used for the analysis. As a results, the solar system efficiency is $35.8\%$ for the plate type and $45.1\%$ for the evacuated type solar collector in the case of $50^{\circ}C$ for the returning district heating water temperature. The returning district heating water temperature is on of the very important factors that is influence on the system efficiency. So the effect of the returning district heating water temperature on the system efficiency is analyzed in this study.

  • PDF

냉방부하 수요 창출을 통한 효율적 에너지 관리방안 연구 (A Study on the Cooling Load Generation for Efficient Energy Management)

  • 우남섭;김용기;이태원
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1007-1012
    • /
    • 2008
  • Demand for the highly efficient and high performance urban energy supply system having been continuously increased according to the rise of quality of life and continuously increased energy cost all over the world. The district heating and cooling system is very effective way for energy saving, cost reduction, and demand side management of energy. There are several district cooling supply technologies such as chilled water direct transportation, installation of absorption type chiller in the user side, and desiccant cooling. This study investigates the advantage and technical problems of each district cooling technology. Also, it is necessary political and financial support system for the extension of district cooling system.

  • PDF

소규모 지역냉난방 시스템 최적설계 시뮬레이션 (The Simulation Approach for the Optimal Design of Small Scale District Heating and Cooling System)

  • 임용훈;박화춘;조수;장철용;정모
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.147-154
    • /
    • 2008
  • A simulation program is developed for the optimal design of small scale district heating and cooling system. Main features for the simulation program are the reliability and the easiness for the optimal design of the DHC(District Heating and Cooling) systems. In order for implementing those features, the operational characteristics according to the prime movers is modeled based on the materials of efficiency as a function of operational load. The unit energy load model is also developed extensively for several building types, of which the corresponding district consist, such as apartment complex, hotel, hospital, buildings for business and commercial use respectively. The specific features and the overall procedure of the simulation are described in brief in this paper. The results of the simulation for several test cases will be presented in subsequent study.

  • PDF

도시지역 에너지 공급체계 개선방안 검토 연구 (A Study on the Planning of Urban Energy Supply Systems Including Co-generation System)

  • 우남섭;이태원;김용기
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.177-182
    • /
    • 2009
  • The purpose of this study is to investigate planning of urban energy supply systems configuration and operating conditions for the district heating and cooling system using combined heat and power system. Generally the district heating and cooling system has been known to one of the effective way for energy saving, cost reduction and demand side management of energy. Economical analyses were carried out and operating characteristics for some systems were examined in terms of GER factor which represents to the ratio of gas and electricity costs. Rates of the energy consumption and the $CO_2$ emission were compared from the system configuration of the energy supply system with new district cooling system with the conventional one.

  • PDF

지역냉방을 위한 아이스슬러리 시스템의 수송 및 분기 특성 (Ice slurry transporting and branching characteristics for the district cooling)

  • 이상훈;유호선;이윤표;이창준;권혁민
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.662-667
    • /
    • 2009
  • The research are performed to check the characteristics of the ice slurry transport system for the district cooling. The system are installed at the 1st floored building which is as large as the $1204\;m^2$ ($86\;m{\times}14\;m$), and the pumping power and branching characteristics are measured by transporting of the ice slurry. The ice slurry transporting pipe is as long as 200 m. For the same cooling load, the higher IPF is, the lower the transporting flow rate and the pumping power are. But when the IPF is higher than 15%, no less decrease of the pumping power does happen. For the branching characteristics, through the branch pipe where the flow resistance is higher, the higher IPF is measured. A little higher IPF is measured at the thermal expansion branch.

  • PDF

OEMGD 알고리즘을 이용한 건물 냉난방용 최적 에너지 믹스 모델에 관한 연구 - 지열히트펌프와 지역냉난방 시스템을 중심으로 (A Study on the Optimal Energy Mix Model in Buildings with OEMGD Algorithm Focusing on Ground Source Heat Pump and District Heating & Cooling System)

  • 이기창;홍준희;이규건
    • 한국지역사회생활과학회지
    • /
    • 제27권2호
    • /
    • pp.281-294
    • /
    • 2016
  • This study was conducted to promote consumer interest in Geothermal Heat Pump (Ground Source Heat Pump, GSHP) and district heating and cooling (District Heating & Cooling, DHC) systems, which are competing with each other in the heating and cooling field. Considering not only the required cost data of energy itself, but also external influence factors, the optimal mix ratio of these two energy systems was studied as follows. The quantitative data of the two energy systems was entered into a database and the non-quantitative factors of external influence were applied in the form of coefficients. Considering both of these factors, the optimal mix ratio of GSHP and DHC systems and minimum Life Cycle Cost (LCC) were obtained using an algorithm model design. The Optimal Energy Mix of GSHP & DHC (OEMGD) algorithm was developed using a software program (Octave 4.0). The numerical result was able to reflect the variety of external influence factors through the OEMGD algorithm. The OEMGD model found that the DHC system is more economical than the GSHP system and was able to represent the optimal energy mix ratio and LCC of mixed energy systems according to changes in the external influences. The OEMGD algorithm could be of help to improve the consumers' experience and rationalize their energy usage.

액체 제습식 냉방 시스템의 최적 설계 (Optimization Design of Liquid Desiccant Cooling System)

  • 전동순;이상재;김선창;김영률;이창준
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.419-428
    • /
    • 2010
  • This paper presents the optimization process of liquid desiccant cooling system using LiCl aqueous solution as a working fluid. Operating conditions(mass flow rate, conditioner outlet concentration, difference concentration) and design factors for heat exchangers(difference temperature of the district heating water, leaving temperature difference of the conditioner, leaving temperature difference of the regenerator, air temperature difference of the conditioner, air temperature difference of the regenerator) were optimized by response surface method. As a result, we obtained the 7.297 kW of cooling capacity and 0.788 of COP at optimized condition. Effect of difference temperature of hot water on system performances was also examined. As difference temperature of the district heating water increases, the cooling capacity increases and COP decreases.

가스터빈 복합발전의 기동특성을 고려한 열거래 기반 지역 냉난방 시스템의 최적 운영 모델 (Optimal Operation Model of Heat Trade based District Heating and Cooling System Considering Start-up Characteristic of Combined Cycle Generation)

  • 김종우;이지혜;김학만
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1610-1616
    • /
    • 2013
  • Recently, district heating and cooling (DHC) systems based on combined cycle generation (CCG) providers are increasing in Korea. Since characteristics of combined heat and power (CHP) generators and heat demands of providers, heat trading between DHC providers based on the economic viewpoint is required; the heat trading has been doing. In this paper, a mathematical model for optimal operation based on heat trading between DHC providers is proposed. Especially, start-up characteristic of CCG is included. The operation model is established by mixed integer linear programming (MILP).

중앙난방방식을 지역난방.소형열병합난방방식으로 전환시의 경제성 비교 분석 (Analysis for the Economic efficiency of District Heating and Gas Engine Co-generation System comparing with Central Heating System)

  • 김규생;이상혁;홍경표;원영재
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.459-465
    • /
    • 2007
  • This study was conducted to calculate the LCC of a apartment complex with a type of heating system, district heating and cogeneration system. For the purpose of analyzing LCC according to size of apartment complex, 500, 1,500 and 4,000 houses of model apartment selected. This research performs design of heating system and the life cycle cost analysis including an initial cost, energy cost, maintenance and operation cost, replacement cost and renovation cost during the project period(15years). According to the calculated results, 1) Initial cost of cogeneration system with 500, 1500 and 4000 houses is higher than district heating system each of 20%, 13%, 12%. 2) In case of cogeneration system, the payback period by electric generation is 5.21, 4.92 and 4.47 years and saving cost was calculated 29 billion won, 94 billion won and 262 billion won after payback period. 3) Cogeneration system LCC was 1.12, 1.07 and 1.06 times larger than district system with the size of apartment complex. According to the case of this study district heating system is more efficient than cogeneration system in terms of the reduction of LCC. 4) Gas Engine Co-generation System is more efficient than other systems because it can collect progressive part from electric charge progressive stage system. However, the efficiency is decreasing because of raising of fuel bills(LNG) and lowering of power rate for house use. Especially the engine is foreign-made so the cost of maintenance and repair is high and the technical expert is short. 5) District heating is also affected by fuel bills so we should improve energy efficiency through recovering of waste heat(incineration heat, etc.). Also, we should supply district cooling on the pattern of heat using of let the temperature high in winter and low in summer.

  • PDF

중앙난방방식을 지역난방과 소형열병합난방 방식으로 전환 시 경제성 비교 분석 (Analysis of the Economic Efficiency of the District Heating and Gas Engine Co-Generation System Compared with the Central Heating System)

  • 김규생
    • 설비공학논문집
    • /
    • 제27권10호
    • /
    • pp.544-551
    • /
    • 2015
  • This study was conducted to determine the LCC of apartment complexes with district heating and a cogeneration system. For the purpose of analyzing LCC according to the size of the apartment complex, 500, 1,500, and 4,000-unit model apartments were selected. Analysis was performed on the design of the heating system and the life cycle cost including total construction cost, maintenance and operation cost for the duration of the project period (15 years). According to the calculated results, 1) The initial cost of the cogeneration system for 500, 1,500, and 4,000-unit apartments is higher than that of the district heating system by 20%, 13%, and 12%, respectively. 2) In the case of the cogeneration system, the payback period by electric generation was found to be 5.21, 4.92 and 4.47 years, and saving cost was calculated to be 29 billion won, 94 billion won and 262 billion won after the payback period for 500, 1,500, and 4,000-unit apartments, respectively. 3) The LCC values of the cogeneration system were 1.12, 1.07 and 1.06 times larger than those of the district system according to the size of the apartment complex. In this study, the district heating system was found to be more efficient than the cogeneration system in terms of LCC reduction. 4) District heating is affected by fuel bills, so energy efficiency should be improved through recovering waste heat (incineration heat, etc.). Also, district cooling should be provided according to heat use to keep the temperature high in winter and low in summer.