• Title/Summary/Keyword: Distributor

Search Result 321, Processing Time 0.03 seconds

An experimental study on thermal storage characteristics in the thermally stratified water storage system (성층 축열 시스템에서의 열 저장 특성에 관한 실험적 연구)

  • Koh, J.Y.;Kim, Y.K.;Lee, C.M.;Yim, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.37-46
    • /
    • 2001
  • This study describes the experimental study that focuses on the effects that distributor shapes and flow rate variations have an influence on the stratification in a rectangular thermal storage tank. Experiments were carried out under the conditions that the flow rates of working fluid are 20, 10 and $5\ell$/min. The storage tank is initially filled with chilled water of $1^{\circ}C$, and is extracted through the bottom at the same rate as the return warm water from load is entered through the distributor at the top of the tank. The thermo-cline forms at the top of the storage tank as the warm water enters the tank from the load through the distributor and the thermo-cline thickness increases with time. Emphasis is given to the effects of mixing at the inlet that increases the thermo-cline decay Flow rate variation and inlet distributor shapes are the important parameters in deciding the performance of a storage system. Stratification degree increases with decreasing in inlet flow rate under $10\ell$/min. Experiments shows that better thermal stratification can be obtain using the distributor to limit momentum mixing at the inlets and outlets. Also, 12% of improvement in the thermal energy usage has been achieved using the modified distributor discharging same flow rate in each lateral ports.

  • PDF

Effect of Air Distributor Pore Size in Foam Separator of Sea Water (해수의 포말분리시 공기분산기 기공크기 영향)

  • SUH Kuen-Hack;KIM Byong-Jin;LEE Jung-Hoon;LIM Jun-Heok;YI Gyeongbeom;KIM Yong-Ha;JO Jae Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.254-262
    • /
    • 2003
  • Effect of the air distributor pore size for the removal of aquacultural waste, such as protein, total suspended solids (TSS), chemical oxygen demand (COD), turbidity and total ammonia nitrogen (TAN) from sea water was investigated by using foam separator. With the increase of pore size of air distributor, removal rates and efficiency of protein decreased. Removal rate by commercial air stone was in the range between the removal rates by G2 and G4 sintered glass discs. Within the range of pore size distributor from Gl to G4, the removal efficiency of protein were ranged from 21 to $42\%.$ The changes of removal rates and efficiencies of TSS, COD and turbidity were similar to proteins. TAN was removed by stripping. The pore size of air distributor for a higher overall oxygen mass transfer coefficient and saturation efficiency provided the condition for higher protein removal rate. Also the foam separator could be used as an aerator.

Fabrication and Characteristics of Supported Type Planar Solid Oxide Fuel Cell By Co-firing Process (공소결법에 의해 제조된 지지체식 평판형 고체산화물 연료전지 성능 특성)

  • Song, Rak-Hyun
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.160-168
    • /
    • 2003
  • The co-firing processes for the supported type planar solid oxide fuel cell were investigated. A flat cell of $7.7${\times}$10.8\textrm{cm}^2$ was fabricated successfully by the co-firing process, in which green films were co-sintered in the forms of two layers of anode/electrolyte or of three layers of anode/electrolyte/cathode with gas distributor. A co-fired cell of two layers yielded a power of 200 ㎽/$\textrm{cm}^2$ at 608 ㎷. Its performance loss was mainly due to iR drop in the anodic gas distributor, which was attributed to poor contact between anodic gas distributor and current collector. The performance in the co-fired cell of three layers was much lower than that of two layers, which resulted from the large iR drop and activation overvoltage at the cathodic side. In the co-fired cell of two layers, the impedance analysis indicated that the performance decay during cell operation is due to both anode overvoltage and iR drop at anode side. Also the electrode reaction of the co-fired two layers' cell is considered to be controlled by activation overvoltage within the low current of 50 ㎃.

3D Casing-Distributor Analysis for Hydraulic Design Application

  • Devals, Christophe;Zhang, Ying;Dompierre, Julien;Vu, Thi C.;Mangani, Luca;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.142-154
    • /
    • 2015
  • Nowadays, computational fluid dynamics is commonly used by design engineers to evaluate and compare losses in hydraulic components as it is less expensive and less time consuming than model tests. For that purpose, an automatic tool for casing and distributor analysis will be presented in this paper. An in-house mesh generator and a Reynolds Averaged Navier-Stokes equation solver using the standard $k-{\omega}$ shear stress transport (SST) turbulence model will be used to perform all computations. Two solvers based on the C++ OpenFOAM library will be used and compared to a commercial solver. The performance of the new fully coupled block solver developed by the University of Lucerne and Andritz will be compared to the standard 1.6ext segregated simpleFoam solver and to a commercial solver. In this study, relative comparisons of different geometries of casing and distributor will be performed. The present study is thus aimed at validating the block solver and the tool chain and providing design engineers with a faster and more reliable analysis tool that can be integrated into their design process.

A Numerical Study on the Design of a Central Flow Distributor Device Stabilizing Flow Uniformity in a vehicular fuel cell stack (차량용 연료전지 스택의 안정적 반응 가스 공급을 위한 중앙 유동 분배기 형상 설계에 관한 수치적 연구)

  • Jung, Hye-Mi;Um, Suk-Kee;Jeong, Hui-Seok;Lee, Seong-Ho;Seo, Jeong-Do;Son, Yeong-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.554-557
    • /
    • 2008
  • In this study, two types of central flow distributor designs are presented and compared to obtain the optimal compact design which has the least flow resistance and the uniform flow distribution in a vehicular fuel cell stack. For effective and reliable prediction on the thermo-flow characteristics of the reactants flow over the entire fuel cell stack domain, open channel flow in the bipolar plates of the power generating cells were simulated by applying a simplified flow resistance model with an empirical porous concept. A number of case studies were performed to figure out an optimal configuration of a central flow distributor device in terms of the time-dependent thermo-flow behavior and load-dependent flow distribution. The results showed that the stable and load-independent thermo-flow uniformity is very design specific, which is closely associated with the design of central manifolding devices in order to achieve the enhanced volumetric power density and the reliable long-lasting operating of fuel cells.

  • PDF

Effects of the Internal Structure on the Distribution Performance of a Refrigerant Distributor (냉매분배기 분배성능에 미치는 내부 형상인자의 영향)

  • Kim, Dong-Hwi;Sa, Yong-Gheol;Chung, Baikyoung;Park, Byung-Duck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.444-450
    • /
    • 2013
  • The distribution performance of refrigerant distributors in air conditioner evaporators was examined numerically and experimentally. Internal flow analysis of the distributor by CFD found that the distance from the socket to the cone, the angle of the cone and the base area of the cone were the most important factors affecting refrigerant distribution ability and vortex creation. To enhance distribution performance, two distributors with improved internal structures were designed. To test these new structures, distribution performance was also analyzed by CFD and an empirical experiment was carried out using the water-nitrogen. Experimental results on the distribution fraction of each distributor hole showed a good agreement with the results of the CFD analysis. Thus, the new design of the distributors enhanced distribution performance of the refrigerant distributors.

Building a Sustainable Competitive Advantage for Multi-Level Marketing (MLM) Firms: An Empirical Investigation of Contributing Factors

  • Keong, Lee Siew;Dastane, Omkar
    • Journal of Distribution Science
    • /
    • v.17 no.3
    • /
    • pp.5-19
    • /
    • 2019
  • Purpose - The purpose of this research is to investigate the factors contributing to sustainable competitive advantage for multi-level marketing (MLM) firms in Malaysia. The selected variables in this study are company image, product innovation, leadership, distributor rewards system and distributor training system. Research design, data, and methodology - Quantitative research method is employed with collected sample size of 398 respondents using judgmental sampling technique. Normality and reliability test were performed in the first stage utilizing SPSS 22 and Confirmatory Factory Analysis (CFA) and variance analysis were obtained in the subsequent stage, following up with the overall fit of the measurement model, Structural Equation Model (SEM) using AMOS 22 with maximum likelihood estimation to assess the internal consistency, convergent validity and discriminant validity. Results - The research findings show that company image, leadership, distributor rewards system and distributor training system were supported and are factors affecting the sustainable competitive advantage of MLM companies in Malaysia. However, in this study, product innovation was not supported but this result does not depict that it is trivial and inconsequential in maintain sustainable advantage. Conclusion - Companies can build sustainable competitive advantage by focusing on these contributing factors. Several other comments and implications were brought to light and discussed in the paper.

The Study on Efficiency Improvement of a Thermal Storage Tank for Solar Combined Heating System (태양열원 난방기의 수축열조 효율개선에 관한 연구)

  • Ryu, Nam-Jin;Han, Yu-Ry;Park, Youn-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.43-49
    • /
    • 2007
  • This study is conducted to improve the efficiency of a thermal storage tank. The thermal storage tank was designed to store heat energy that obtained from the solar or the others heat sources. However, it has difficulties in storing heat with nonuniform temperature through the entire tank with respect to the vertical direction, This study is focused on the thermal stratification to improve thermal comfort for the resident in house. To enhance temperature stratification of the tank, a distributor was designed and installed in the middle of the storage tank vertically. The vertically designed distributor could supply the return water with stratified temperature in the storage tank with respect to the height. The water velocity from the distributor hole is the same with the other outlet in the distributor. However, gravity effect on the flow in the storage tank is much higher than that of the velocity effect due to that Froude Number is less than 1. During the heat charging process in the storage tank, temperature maintained with little difference with respect to the height. However the charging process takes long time to get a effective temperature for the heating or hot water supply because of all of water in the storage tank needs to be heated.

Tracepro Simulation Design and Evaluation for the Double Blind Light Pipe Daylighting System (Tracepro를 활용한 이중 블라인드 광파이프 채광 시스템의 블라인드 설계 및 시스템 효율 평가)

  • Kang, Eun-Chul;Lee, Euy-Joon;Yo, Seong-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.515-520
    • /
    • 2012
  • A daylighting system includes three parts; light collector, light transformer and light distributor. A DBLP(Double blind light pipe) daylighting system consists of a double blind light collector, a mirror duct type light transformer and a prism film light pipe distributor. The double blinds for a light collection are used to track the sun's altitude and azimuth movements throughout the day. Behind both sets of blinds is the light transformer, which is based on a rectangular cone shaped light duct. The light transformer was designed to efficiently deliver the light into the light pipe within a 30 degree radial spread for the efficient light into the distributor. In this study, DBLP system efficiency was simulated, evaluated and optimized by Tracepro as a popular ray trace light design simulation program. The results indicated that DBLP system efficiency evaluated a maximum 22.4% in case of Spring/Fall season solar noon time. While the overall average system efficiency in the morning and afternoon is evaluated about 10%.

Analysis on Fertilizer Application Uniformity of Centrifugal Fertilizer Distributor

  • Kim, JiMan;Woo, Dukgam;Kim, Taehan
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.420-425
    • /
    • 2018
  • Purpose: Chemical fertilizers contribute to agricultural productivity. Annually, 450,000 tons of chemical fertilizers are used in Korea, which is 268 kg per hectare (MAFRA, 2016). However, excessive use causes problems such as environmental pollution and soil acidification. This study proposes use conditions for a fertilizer distributor that can reduce excessive fertilization by analyzing distribution patterns. Methods: This study analyzed fertilizer application uniformity according to the number of blades on a centrifugal fertilizer distributor (three or four blades), orifice gate open ratio (50 or 100%), and blade rotation speed (400, 500, or 600 rpm). Results: When using four blades, the coefficient of variation (CV) was lower than when using three by 11-13% points, and the CV using the 50% open ratio was 10-30% points lower than using the 100% open ratio. The CV at 500 rpm blade rotating speed was 9-12% points lower than that for 400 and 600 rpm. Conclusions: The CV with four blades, 50% orifice gate open ratio, and 500 rpm of blade rotating speed was 18.4%, which provided the most uniform fertilization.