• 제목/요약/키워드: Distribution-Free Approach

검색결과 135건 처리시간 0.032초

건설 프로젝트의 사업타당성 분석에 관한 연구 (A Feasibility Study of the Construction Project in Pre-Design Phase)

  • 노병옥;이상범;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술논문발표회
    • /
    • pp.109-113
    • /
    • 2002
  • Urban public service is goods and activities which satisfy public demands for the political, social, economic, cultural activity and household affairs of individual or groups and which urban government supply with free of charge. In view of government, in addition to fairness of facilities location, location of such facilities are to be determined the respect to cost of locating facilities and developmental direction in the future. Therefore, it is necessary to study on feasibility. A feasibility study Is an effective tool in determining the decision of investment or not and the level of investment priority on Projects requiring a sizeable investment and the feasibility of a project. The first, it is to select reasonable location. It was selected four and two by consideration of facilities distribution and connection with others. Six proposal selected was estimated by five element of approach, demand, symbol, reality, environment. In result proposal I was chosen. The next, it is to estimate scales. The finally, it is to study on economical efficiency. Net Present Value was came out ₩4.4billion by 20years and Inter Rate of Return showed up 11%. in addition, it offer various benefit by public facilities. In conclusion, this project is reasonable.

  • PDF

PIV에 의한 델타형 날개에서의 유동특성에 관한 연구 (A Study about Flow Characteristics on Delta-wing by PIV)

  • 이현;김범석;손명환;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2151-2156
    • /
    • 2003
  • The distinguishing features of flows at high angles of attacks are caused by the generation of free shear layers at sharp leading edges, by separation of the viscous layers from the surfaces of wings and bodies and by the flow in the wakes of the wings and bodies. In this study, systematic approach by PIV experimental method within a circulating water channel was adopted to study the fundamental characteristics of induced vortex generation, development and its breakdown appearing on a delta wing model with or without LEX in terms of four angles of attack($15^{\circ}$, $20^{\circ}$, $25^{\circ}$, $30^{\circ}$) and six measuring sections(30%, 40%, 50%, 60%, 70%, 80%) of chord length. Distributions of time-averaged velocity vectors and vorticities over the delta wing model were compared along the chord length direction. Highly swept leading edge extension(LEX) applied to delta wings has greatly improved the subsonic maneuverability of contemporary fighters. High-speed CCD camera which made it possible to acquire serial images is able to get the detailed information about the flow characteristics occurred on the delta wing. Especially quantitative comparison of the maximum vorticity featuring the induced pressure distribution were also conducted to clarity the significance of the LEX existence.

  • PDF

A Numerical Study of the Performance of a Contoured Shock Tube for Needle-free Drug Delivery

  • Rasel, Md. Alim Iftekhar;Kim, Heuy Dong
    • 한국가시화정보학회지
    • /
    • 제10권2호
    • /
    • pp.32-38
    • /
    • 2012
  • In recent years a unique drug delivery system named as the transdermal drug delivery system has been developed which can deliver drug particles to the human skin without using any external needle. The solid drug particles are accelerated by means of high speed gas flow through a shock tube imparting enough momentum so that particles can penetrate through the outer layer of the skin. Different systems have been tried and tested in order to make it more convenient for clinical use. One of them is the contoured shock tube system (CST). The contoured shock tube consists of a classical shock tube connected with a correctly expanded supersonic nozzle. A set of bursting membrane are placed upstream of the nozzle section which retains the drug particle as well as initiates the gas flow (act as a diaphragm in a shock tube). The key feature of the CST system is it can deliver particles with a controllable velocity and spatial distribution. The flow dynamics of the contoured shock tube is analyzed numerically using computational fluid dynamics (CFD). To validate the numerical approach pressure histories in different sections on the CST are compared with the experimental results. The key features of the flow field have been studied and analyzed in details. To investigate the performance of the CST system flow behavior through the shock tube under different operating conditions are also observed.

China-ASEAN Trade Relations: A Study of Determinants and Potentials

  • TRAN, Hiep Xuan;HOANG, Nhan Thanh Thi;NGUYEN, Anh Thuy;TRUONG, Hoan Quang;DONG, Chung Van
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권9호
    • /
    • pp.209-217
    • /
    • 2020
  • The purpose of this study is to investigate the development and determinants of China-ASEAN trade relations over the period of 2000-2018. Employing both the qualitative and quantitative approaches, the results show that the trade relations between China and the Association of South East Asian Nations (ASEAN) have remarkably developed and rapidly grown over times, with a significantly important concentration on the segments of high technological and medium technological products. We also find that China's economic scale is crucially impacting on the China-ASEAN trade relations under both the aggregate and sub-sector level. It is interesting to notice that there is no evidence to support accession to the World Trade Organization (WTO) and officially forming of ASEAN-China Free Trade Agreement (ACFTA) to enhance trade relation between both sides. The findings also quantitatively indicate that there is much significant potential for the expansion of mutual trade between China and some members of ASEAN such as Brunei, Laos and Malaysia, while less potential is predicted for other members of ASEAN. It is strongly suggested that China and ASEAN should find a new proactive approach and make more efforts in improving the mutual political trusts to enhance trading activities in the coming years.

수치해석을 통한 대형 선박용 프로펠러의 비공동소음 예측 (Prediction of Non-cavitation Noise from Large Scale Marine Propeller)

  • 유기완;이종열;김봉기;변정우
    • 한국소음진동공학회논문집
    • /
    • 제25권2호
    • /
    • pp.75-82
    • /
    • 2015
  • Noises from the large scale marine propeller are calculated numerically on non-cavitation condition. The hydrodynamic analysis is carried out by potential based panel method with time marching free wake approach. The distribution of hydrodynamic loads on the propeller surface and noise signals are obtained using the unsteady Bernoulli's equation and the Farasssat's formula respectively. It turns out that the noise signal at the narrow band shows strong peak at the blade passage frequency, and the peak value at the 1/3 octave band also shows the same trend. Noise signals and directivity patterns for both the thickness and the loading noise are compared with each other. The directivity pattern for the loading noise shows minor lobe at the backward side of the rotating disc plane.

Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid

  • Shafiee, Ali A.;Daneshmand, Farhang;Askari, Ehsan;Mahzoon, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • 제50권1호
    • /
    • pp.53-71
    • /
    • 2014
  • A semi-analytical method is developed to consider free vibrations of a functionally graded elastic plate resting on Winkler elastic foundation and in contact with a quiescent fluid. Material properties are assumed to be graded distribution along the thickness direction according to a power-law in terms of the volume fractions of the constituents. The fluid is considered to be incompressible and inviscid. In the analysis, the effect of an in-plane force in the plate due to the weight of the fluid is taken into account. By satisfying the compatibility conditions along the interface of fluid and plate, the fluid-structure interaction is taken into account and natural frequencies and mode shapes of the coupled system are acquired by employing energy methods. The results obtained from the present approach are verified by those from a finite element analysis. Besides, the effects of volume fractions of functionally graded materials, Winkler foundation stiffness and in-plane forces on the dynamic of plate are elucidated.

Three-Dimensional Effects on Added Masses of Ship-Like Forms for Higher Harmonic Modes

  • Y.K.,Chon
    • 대한조선학회지
    • /
    • 제25권2호
    • /
    • pp.19-30
    • /
    • 1988
  • Sectional added masses of an elastic beam vibrating vertically on the free surface in higher harmonic modes are evaluated. Hydrodynamic interactions between neighboring sections, which strip theory ignores, are considered for modal wave lengths of the order of magnitude of cross-sectional dimensions of the body. An approximate solution of modified Helmholtz equation which becomes a singular perturbation problem at small wave lengths is secured to get an analytic expression for added masses attending higher harmonic modes. As a bound of the present theory, the modified Helmholtz equation is solved for the long flat plate vibrating at high frequency on the water surface without any limitations on modal frequency. Finally, extensive series of numerical calculations are carried out for ship-like forms. It is found that when modal wave length is comparable to or shorter than a typical cross-sectional dimension of a body, sectional interaction effects are large which result in considerable reductions in added masses. For a fuller section, the ratio of added mass reduction is greater. In the limit of vanishing sectional area, the added masses approach to that of flat plate of equal beam. It is shown that the added mass distribution for a Legendre modal from can be determined form the present theory and that the results agree with the extensive three-dimensional determination of Vorus and Hilarides.

  • PDF

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.

Vibrational characteristic of FG porous conical shells using Donnell's shell theory

  • Yan, Kai;Zhang, Yao;Cai, Hao;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.249-260
    • /
    • 2020
  • The main purpose of this research work is to investigate the free vibration of conical shell structures reinforced by graphene platelets (GPLs) and the elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. To this end, a shell model is developed based on Donnell's theory. To solve the problem, the analytical Galerkin method is employed together with beam mode shapes as weighting functions. Due to importance of boundary conditions upon mechanical behavior of nanostructures, the analysis is carried out for different boundary conditions. The effects of boundary conditions, semi vertex angle, porosity distribution and graphene platelets on the response of conical shell structures are explored. The correctness of the obtained results is checked via comparing with existing data in the literature and good agreement is eventuated. The effectiveness and the accuracy of the present approach have been demonstrated and it is shown that the Donnell's shell theory is efficient, robust and accurate in terms of nanocomposite problems.

Nonlocal vibration analysis of FG nano beams with different boundary conditions

  • Ehyaei, Javad;Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • 제4권2호
    • /
    • pp.85-111
    • /
    • 2016
  • In this paper, the classical and non-classical boundary conditions effect on free vibration characteristics of functionally graded (FG) size-dependent nanobeams are investigated by presenting a semi analytical differential transform method (DTM) for the first time. Three kinds of mathematical models, namely; power law (P-FGM), sigmoid (S-FGM) and Mori-Tanaka (MT-FGM) distribution are considered to describe the material properties in the thickness direction. The nonlocal Eringen theory takes into account the effect of small size, which enables the present model to become effective in the analysis and design of nanosensors and nanoactuators. Governing equations are derived through Hamilton's principle and they are solved applying semi analytical differential transform method. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as small scale effects, spring constant factors, various material compositions and mode number on the normalized natural frequencies of the FG nanobeams in detail. It is explicitly shown that the vibration of FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.