• Title/Summary/Keyword: Distribution system power flow

Search Result 337, Processing Time 0.027 seconds

An Application of the Optimal Routing Algorithm for Radial Power System using Improved Branch Exchange Technique (개선된 선로교환 기법을 이용한 방사상 전력계통의 최적 라우팅 알고리즘의 적용)

  • Kim, Byeong-Seop;Sin, Jung-Rin;Park, Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.6
    • /
    • pp.302-310
    • /
    • 2002
  • This paper presents an application of a improved branch exchange (IBE) algorithm with a tie branch power (TBP) flow equation to solve the Optimal Routing problem for operation of a radial Power system including power distribution system. The main objective of the Optimal Routing problem usually is to minimize the network real power loss and to improve the voltage profile in the network. The new BE algorithm adopts newly designed methods which are composed by decision method of maximum loss reduction and new index of loss exchange in loop network Thus, the proposed algorithm in this paper can search the optimal topological structures of distribution feeders by changing the open/closed states of the sectionalizing and tie switches. The proposed algorithm has been evaluated with the practical IEEE 32, 69 bus test systems and KEPCO 148 bus test system to show favorable performance gained.

A Study on the Reverse-Power-Flow Phenomenon due to Transformer Wiring Types in Distribution System (배전계통에서 변압기 결선에 의한 역 조류현상에 관한 연구)

  • Shin, Dong-Yeol;Ha, Bok-Nam;Jung, Won-Wook;Cha, Han-Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.111-119
    • /
    • 2008
  • As the penetration of distributed generation systems is recently high, there have been metering errors, trips of protective devices in KEPCO distribution systems including an occurrence of false fault-indicator in distribution automation system. The cause of malfunctions was the reverse-power-flow phenomenon due to transformer wiring types. By the effect of the reverse-power-flow, each of phase's fundamental currents was added by about 3 times on the neutral line. A new method based on the analysis of the reverse-power-flow is proposed in this paper. Fault currents on each section were analyzed by the proposed method, and the effect of types of transformer wiring was examined experimentally. In order to reduce the malfunctions due to the reverse-power-flow, controlling the zero-sequence impedance of transformer was designed and verified by using PSCAD/EMTDC software.

Power Control and Ground Fault Simulations for a Distribution System with a Fuel Cell Power Plant

  • Hwang, Jin-Kwon;Choi, Tae-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.9-19
    • /
    • 2010
  • Fuel cell (FC) distributed generation (DG) is gradually becoming more attractive to mainstream electricity users as capacity improves and costs decrease. New technologies including inverters are becoming available to provide a uniform standard interconnection of DGs with an electric power system. Some of the operating conflicts and the effect of DG on power quality are addressed and investigated through simulations on a real distribution network with an FC power plant. The results of these simulations have proved load tracking capability following the real and reactive power change of the load and have shown the flow of overcurrent from an FC power plant during the ground fault of a distribution line.

Northeast Asia Interconnection and Regional Reserve Increase Effects (동북아 연계선로 구성 및 지역별 예비력 증가 효과)

  • Lee, Sang-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.417-419
    • /
    • 2005
  • This paper presents the effects and the regional power distribution of an increase or a decrease of a power reserve by load flow calculations under seasonal load patterns of each country for the future power shortages faced by the metropolitan areas or by the southeastern area of the South Korea in North-East Asia. In these connections, the types of a power transmission for interconnection consist of the 765kV HVAC and the HVDC. In this paper, the various cases of the power system interconnections in Far-East Asia are presented, and the resulting interconnected power systems are simulated by means of a power flow analysis performed with the PSS/E 28 version tool. The power flow map is drawn from data simulated and the comparative study is done. In this future, a power flow analysis will be considered to reflect the effects of seasonal power exchanges And the plan of assumed scenarios will be considered with maximum or minimum power exchanges during summer or winter in North-East Asia countries.

  • PDF

Configurations of AC and DC-type Quality Control Center for a New Distribution System FRIENDS

  • Hayashi Yusuke;Saisyo Masaki;Ise Toshifumi;Tsuji Kiichiro
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.497-501
    • /
    • 2001
  • Unbundled power quality service is paid much attention under the circumstances of deregulation and diversification of needs of customers for quality and price of electric power. Moreover, distributed generators (DGs) such as photovoltaic generations and wind turbines will be introduced to distribution system more and more, and reverse flow of active power has possibility to cause new problems in the distribution system such as voltage rise of distribution line and protection problem. Flexible, Reliable and Intelligent Electrical eNergy Delivery System, which is called FRIENDS, has been proposed as one of promising distribution system for such requirements, and intensive studies are under way. One of features of the system is introducing Quality Control Center (QCC) into the system for unbundled power quality service and easy installation of DGs. Two types of QCCs for such purposes are proposed, and simulation results are shown in this paper.

  • PDF

Model of Photovoltaic Systems for 3 Phase Power Flow (3상 조류 계산을 위한 Photovoltaic 시스템 모델)

  • Ryan, Diolata;Song, Hwa-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.311-313
    • /
    • 2007
  • Three phase power flow is commonly considered exclusively for the distribution systems, where single or double phase circuits may be present and loads may not always balanced between the three phases. This paper deals with modelling and analysis of grid connected photovoltaic (PV) system in three-phase power flow, with the consideration of the PV inverter output power limitations.

  • PDF

The Analysis of 2004 Summer Peak Load in Korea Power system (2004년 하계 첨두부하 시 계통운영 실적 분석)

  • Song, Tae-Yong;Hwang, Bong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.113-115
    • /
    • 2004
  • This year korea power system had recorded highest peak load for 6 times and finally it made new peak load 51,264MW at July 29th 3:00 PM. The new peak load is increased 8.2% from the last year peak load 47,385MW and korea power system entered 50,000MW load era. The Korea Power Exchange (KPX) snapped power system data at the peak load time using state estimation function in the EMS. And authors converted the power system data at peak load to PSS/E power flow format. Using this PSS/E peak load power flow data, this paper explains demand analysis result shun capacitor operation, voltage distribution at the peak load. And the paper shows the simulation result of 2 contingency analysis using the snapped PSS/E peak load data.

  • PDF

Temperature Characteristic Analysis according to Variation of Properties of Transformer Insulating Oil (변압기 절연유의 물성치 변화에 따른 온도특성해석)

  • Kim, Ji-Ho;Rhee, Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.327-332
    • /
    • 2014
  • In this paper, the temperature distribution according to the property change of the insulating oil of the power transformer and max temperature were predicted through the ductility interpretation which heat-flow is coupled. By using CFD (Computation Fluid Dynamics) for the interpretation, the temperature distribution of 154kV the class single phase power transformer was predicted. The power loss causing the temperature rise of the transformer was changed to the heat source and we used as the input value for the heat-flow analysis. The temperature distribution was predicted according to the change of the density, specific heat, thermal conductivity and viscosity, that is the ingredient having an effect on the temperature rise of the transformer oil. The mineral oil of 4 kinds used in domestic and international based on the interpreted result was selected and the temperature distribution according to each load and Hot Spot temperature was predicted.

Fan Noise Prediction Method of Air Conditioning and Cooling System (공기조화 및 냉각시스템의 팬 소음예측 기법)

  • Lee, Jin-Young;Lee, Chan;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1318-1320
    • /
    • 2007
  • Fan noise prediction method is presented for air conditioning and/or cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(Flow Network Modeling) with the flow resistances for flow elements of the system. Based on the fan operation point predicted from the FNM analysis results, the present fan noise model predicts overall sound power, pressure levels and spectrum. The predictions of the flow distribution, the fan operation and the noise level in electronic system by the present method are well agreed with 3-D CFD and actual noise test results.

  • PDF

Selection and Noise Evaluation Methods of the System Electronic Cooling Fan (시스템 전자 냉각 팬의 선정 및 소음 평가 기법)

  • Lee, Chan;Yun, Jae-Ho;Gwon, Oh-Kyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.33-38
    • /
    • 2007
  • Fan selection procedure and fan noise evaluation method are presented for the system electronic cooling by combining FNM(Flow Network Model) and fan noise correlation model. Internal flow paths and distribution in electronic system we analyzed by using the FNM with the flow resistances for flow elements of the system. Based on the fan operation point predicted from the FNM analysis results, the present fan noise model predicts overall sound power, pressure levels and spectrum. The predictions of the flow distribution, the fan operation and the noise level in electronic system by the present method are well agreed with 3-D CFD and actual test results.