• Title/Summary/Keyword: Distribution system

Search Result 15,304, Processing Time 0.048 seconds

determination of Optimum Pipe diameter Using Multi-Stage Iterative Method in Water Distribution system (다단계 반복기법을 이용한 관로시스템의 최적관경 결정)

  • Han, Geon-Yeon;Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.327-335
    • /
    • 1998
  • The distribution network is an essential part of all water supply systems. The cost of this portion of any sizable water supply system may amount to most of the entire cost of the project. This study tried to reduce the cost of the distribution system through optimization in system design. To determine pipe diameter considered in water distribution system design, a iterative procedure linked the flow analysis model and optimization model was used. Linear theory was introduced to analyze flowrate and revised-simplex method based on linear programming is used to optimize pipe diameter. This model was applied to wter distribution system with 22 and 35 pipes, and rapidly determine optimized commercial pipe diameters. Keywords : water distribution system, revised simplex method, optimum pipe diameters.

  • PDF

Load Flow Analysis for Distribution Automation System based on Distributed Load Modeling

  • Yang, Xia;Choi, Myeon-Song;Lim, Il-Hyung;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.329-334
    • /
    • 2007
  • In this paper, a new load flow algorithm is proposed on the basis of distributed load modeling in radial distribution networks. Since the correct state data in the distribution power networks is basic for all distribution automation algorithms in the Distribution Automation System (DAS), the distribution networks load flow is essential to obtain the state data. DAS Feeder Remote Terminal Units (FRTUs) are used to measure and acquire the necessary data for load flow calculations. In case studies, the proposed algorithm has been proven to be more accurate than a conventional algorithm; and it has also been tested in a simple radial distribution system.

The comparison of distribution automation technology between foreign and domestic system (국내외 배전자동화 기술 비교분석)

  • Ha, Bok-Nam;Oh, Jae-Hyung;Cho, Nam-Hun;Bae, Seong-Hwan;Kim, Jae-Sung;Jung, Chang-Soo;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.462-465
    • /
    • 2002
  • KEPCO enforces the development about distribution automation technology continuously for 10 years and reached in fair level present. And distribution automation system was constructed actively meantime, its establishment will be completed 100% at late 2002s. Distribution automation system had been developed also in Japan, U.S.A and Europe etc. In japan, distribution automation system was established all business office to whole county. Lately, there is examining distribution automation expansion actively in developing country including China. Therefore, we try to analyze domestic and foreign technological variance as that examine foreign distribution automation trend and the development direction of domestic distribution automation technology forward.

  • PDF

Section Voltage Calculation while a Loop Operation by Tie-Switch Close in a Distribution Management System (배전운영 시스템에서 상시개방 연계 스위치 투입에 의한 루프 운전 중 구간전압 계산 방법)

  • Seo, Jeong-Soo;Lim, Il-Hyung;Park, Jong-Ho;Shin, Yonh-Hak;Choi, Myeon-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.397-403
    • /
    • 2016
  • Generally, an electrical distribution configuration is a radial system with one-way current in a distribution management system (DMS). All feeders in a DMS have tie-switches to make radial system. Sometimes, DMS should change a tie-switch for operation. In that case, the tie-switch has to be closed first; then a switch is opened as another tie-switch in order to prevent blackout for customers. At the moment when the tie-switch is closed, distribution system is operated in a loop state, not radial. Before the loop operation, DMS operator has to check any expected events for stable distribution system operation; and the most important event is a mis-operation of a protection relay. In addition, DMS operator should check voltage profile violation but a calculation method of section voltages had not been used. Thus, this paper proposes a calculation method of section voltages at a loop operation in a DMS. The proposed calculation algorithm is verified by Matlap Simulink.

배전계통의 자동화 운전

  • 현덕화;문홍석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.557-561
    • /
    • 1989
  • This paper presents a new operation method on power distribution system by automated distribution system (ADS). A performance of this automation is established to operate the distribution system faster than earlier. We reduced the period and region of power failure by ADS.

  • PDF

A Study on the Cost Structure for Joint Logistics in Multi-Stage Distribution Chain of E-Commerce Environment (전자상거래상의 다단계 분배체계의 물류공동화를 위한 비용구조에 관한 연구)

  • 권방현
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.4
    • /
    • pp.200-210
    • /
    • 2000
  • Distribution Activity for customer is preferred at Physical distribution system in e-commerce, so fast delivery and low distribution cost determine the core competency of enterprise. Because there is no cooperative system between with distribution centers in traditional distribution system, it is difficult to optimize the system. The purpose of this paper is to propose a cost structure model for multi-stage distribution system, which is used for determination of joint lot size and optimal demand and transportation policy. It is expected to contribute to development of algorithm for joint distribution system, which is minimized the transportation cost by the result of this cost structure model.

  • PDF

Unbalancing Voltage Control of LVDC Bipolar Distribution System for High Power Quality (전력 품질 향상을 위한 LVDC 양극성 배전 시스템의 불평형 전압 제어)

  • Lee, Hee-Jun;Shin, Soo-Choel;Kang, Jin-Wook;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.486-496
    • /
    • 2016
  • The voltage unbalance of an LVDC bipolar distribution system was controlled for high power quality. Voltage unbalance may occur in a bipolar distribution system depending on the operation of the converter and load usage. Voltage unbalance can damage sensitive load and lead to converter accidents. The conditions that may cause voltage unbalance in a bipolar distribution system are as follows. First, three-level AC/DC converters in bipolar distribution systems can lead to voltage unbalance. Second, bipolar distribution systems can be at risk for voltage unbalance because of load usage. In this paper, the output DC link of a three-level AC/DC converter was analyzed for voltage unbalance, and the bipolar voltage was controlled with algorithms. In the case of additional voltage unbalance according to load usage, the bipolar voltage was controlled using the proposed converter. The proposed converter is a dual half-bridge converter, which was improved from the secondary circuit of a dual half-bridge converter. A control algorithm for bipolar voltage control without additional converters was proposed. The balancing control of the bipolar distribution system with distributed power was verified through experiments.

Lifetime Distribution Model for a k-out-of-n System with Heterogeneous Components via a Structured Markov Chain (구조화 마코프체인을 이용한 이종 구성품을 갖는 k-out-of-n 시스템의 수명분포 모형)

  • Kim, Heungseob
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.332-342
    • /
    • 2017
  • Purpose: In this study, the lifetime distribution of a k-out-of-n system with heterogeneous components is suggested as Markov model, and the time-to-failure (TTF) distribution of each component is considered as phase-type distribution (PHD). Furthermore, based on the model, a redundancy allocation problem with a mix of components (RAPMC) is proposed. Methods: The lifetime distribution model for the system is formulated by the structured Markov chain. From the model, the various information on the system lifetime can be ascertained by the matrix-analytic (or-geometric) method. Conclusion: By the generalization of TTF distribution (PHD) and the consideration of heterogeneous components, the lifetime distribution model can delineate many real systems and be exploited for developing system operation policies such as preventive maintenance, warranty. Moreover, the effectiveness of the proposed RAPMC is verified by numerical experiments. That is, under the equivalent design conditions, it presented a system with higher reliability than RAP without component mixing (RAPCM).

Selection of Diffuser for Lower Temperature Air Distribution System (저온공조용 취출구의 선정)

  • Park, Sung-Kyu;Yoo, Ho-Joon;Choi, Myeong-Shin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.484-492
    • /
    • 2008
  • Air Discharge pattern and even temperature distribution is critical for a successful lower temperature air distribution system, which would supply lower temperature air than normal HAVC system. Selection of appropriate diffuser is the most critical element in completing lower temperature system.

  • PDF

A Study on Operation Method of Power Distribution System Integrated with Dispersed Generation System (분산형전원이 도입된 복합배전계통의 운용방안에 대한 고찰)

  • Kim, Jae-Eon;Jo, Seong-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.692-698
    • /
    • 1999
  • This paper analyzes the effect of DGS(Dispersed Generation System) on the voltage regulation of the traditional distribution system of which the voltage is controlled by the bank LDC(Line Drop Compensator). Through the simulation results for 22.9kV class distribution system with DGSs, some general relationships among the operating power factor and introduction limit of DGS, and the sending-end reference voltage determined by internal setting coefficients of the LDC are derived. Those relationships are that the introduction limit of DGS increases as the power factor of DGS goes from lagging to leading and also as the allowance of the sending-end reference voltage increases. From the relationships, a operation method of the power distribution system integrated with DGSs is proposed from the view point of the operating power factor of DGS and new voltage regulation method.

  • PDF