• Title/Summary/Keyword: Distribution of particles

Search Result 1,788, Processing Time 0.028 seconds

MEASUREMENT OF SURFACE TENSION OF MOLTEN METALS IN ARC WELDING

  • Shinobu Satonaka;Shigeo Akiyoshi;Inoue, Rin-taro;Kim, Kwang-Ryul
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.757-762
    • /
    • 2002
  • Many reports have been shown that the buoyancy, electromagnetic force, surface tension, and gas shear stress are the driving forces of weld pool circulation in arc welding. Among them, the surface tension of molten metal plays an important role in the flow in weld pool, which are clarified by the specially designed experiments with small particles as well as the numerical simulations. The surface tension is also related to the penetration in arc welding. Therefore, a quantitative evaluation of surface tension is demanded for the development of materials and arc process control. However, there are few available data published on the surface tension of molten metals, since it depends on the temperature and the composition of materials. In this study, a new method was proposed for the evaluation of surface tension and its temperature dependence, in which it is evaluated by the equilibrium condition of acting forces under a given surface geometry, especially back surface. When this method was applied to the water pool and to the back surface of molten pool in the stationary gas tungsten arc welding of thin plate, following results were obtained. In the evaluation of surface tension of water, it was shown that the back surface geometry was very sensitive to the evaluation of surface tension and the evaluated value coincided with the surface tension of water. In the measurement of molten pool in the stationary gas tungsten arc welding, it was also shown that the comparison between the surface tension and temperature distribution across the back surface gave the temperature dependent surface tension. Applying this method to the mild steel and stainless steel plates, the surface tension with negative gradient for temperature is obtained. The evaluated values are well matched with ones in the published papers.

  • PDF

Changes in plant community structure in relation to climate change and restoration plot areas in Mongolia

  • Lkhavgadorj, Khureltsetseg;Iderzorig, Badamnyambuu;Kwon, Ohseok
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.119-125
    • /
    • 2016
  • Mongolia has one of the strongest climate warming signals on Earth, and over 40% of the human population depends directly or indirectly on pastoral livestock production for their livelihoods. Thus, climate-driven changes in rangeland production will likely have a major effect on pastoral livelihoods . The loss of species dependent mostly on rainfall has resulted in adverse changes in the botanical composition of the steppes . Summer season in 2015 was completely dry until middle of July and, had not enough vegetation cover as last 15 years. The purpose of this study is to check plant community dynamics in Mongolia in relation to climate change in 2014 and 2015. The study sites were selected in mountain-steppe habitat in central Mongolia. In the 2014, there have been registered 81 plant species of 56 genera of 25 families on the investigated sites and, occurred 57 plant species of 44 genera of 21 families in the 2015. It is concluded that the abundance and richness of plants are directly connected to heavily affect by the climatic factor, i.e. amount of precipitation during growing season. As a same like result of climate change, in Mongolian land is going become desertification, and each spring, soil particles from Mongolia are swept up by a cold air mass into the atmosphere and blasts into south east China, Korea and Japan. The Koreans call this phenomenon the "Fifth season" or "Yellow sand", and the Chinese call it "Yellow dragon".

Characteristics of Particulate Matter Generated during the Operation of a Small Directly Fired Coffee Roaster (소형 직화식 커피 로스터 이용 시 발생하는 미세먼지 특성 연구)

  • Yu, Da Eun;Kim, Seung Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.236-248
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate the concentrations of particulate matter generated during coffee roasting and to study various factors affecting the concentrations. Methods: Differences in concentration levels were investigated based on various factors to understand the emission rates of particulate matter over time and to compare the mass and number concentrations according to their size. Sampling was performed in closed laboratories without the operation of air conditioning or ventilation. Optical Particle Sizer(OPS) was used as a measuring device. An OPS measures using a light-scattering method. Sampling was performed for sixty minutes at one-minute intervals. The background concentration was measured for about 30 minutes before starting of coffee roasting. The concentrations of particulate matter generated during coffee roasting were monitored until roasted coffee beans were removed from the roaster and cooled down. Several factors affecting the concentrations of particulate matter were investigated, which includes the origins of green beans, the roasting level, and the input amount of green beans. Results: The results of this study may be summarized as follows: 1) There was no difference in particulate matter concentration levels by the origin of the green beans, but a statistically significant difference in concentration levels by roasting level and the input amount of green beans; The higher the roasting level, the higher was the particulate matter concentration. The more green beans we put in the roaster, the higher were the concentrations; 2) The PM10 mass concentrations increased over time. The average concentration after roasting was higher than the average concentration during roasting; 3) In the distribution of mass and number concentration by particle diameter, the majority of particles was below 2.5 ㎛. Conclusions: Persons who work in roastery cafes can be exposed to high concentrations of particulate matter. Therefore, personal exposure and risk assessment should be conducted for roastery cafe workers.

Electrochemical modification of the porosity and zeta potential of montmorillonitic soft rock

  • Wang, Dong;Kang, Tianhe;Han, Wenmei;Liu, Zhiping;Chai, Zhaoyun
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.191-202
    • /
    • 2010
  • The porosity (including the specific surface area and pore volume-diameter distribution) of montmorillonitic soft rock (MSR) was studied experimentally with an electrochemical treatment, based on which the change in porosity was further analyzed from the perspective of its electrokinetic potential (${\zeta}$ potential) and the isoelectric point of the electric double layer on the surface of the soft rock particles. The variation between the ${\zeta}$ potential and porosity was summarized, and used to demonstrate that the properties of softening, degradation in water, swelling, and disintegration of MSR can be modified by electrochemical treatment. The following conclusions were drawn. The specific surface area and total pore volume decreased, whereas the average pore diameter increased after electrochemical modification. The reduction in the specific surface area indicates a reduction in the dispersibility and swelling-shrinking of the clay minerals. After modification, the ${\zeta}$ potential of the soft rock was positive in the anodic zone, there was no isoelectric point, and the rock had lost its properties of softening, degradation in water, swelling, and disintegration. The ${\zeta}$ potential increased in the intermediate and cathodic zones, the isoelectric point was reduced or unchanged, and the rock properties are reduced. When the ${\zeta}$ potential is increased, the specific surface area and the total pore volume were reduced according to the negative exponent law, and the average pore diameter increased according to the exponent law.

Condition and Mechanism of Precipitation of Intravesicular Aluminum Ion in Preparation of Monodispersed Spherical Fine Particles With Use of Vesicles (베시클을 이용한 단분산 구형 미분체 합성에서 베시클 내 알루미늄 이온의 침전조건과 침전메카니즘)

  • Chung, Jong Jae;Kim, Chang Hyun;Lee, Byung Kyo;Ri, Chang Seop;Lee, Hae Wook
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.8
    • /
    • pp.535-541
    • /
    • 1996
  • In preparation of fine alumina powders with use of vesicle, the effect of variation of pH in extravesicular dispersion system to mechanism of precipitation and shape and size distribution of precipitate was investigated. The results of observation by TEM and turbidimeter were obtained as follows. Reaction between aluminum ion and hydroxyl ion to produce precipitate within vesicle was initiated at pH 11.4 and spherical fine precipitates, about 50 nm size, were formed at pH 12.0. About pH 12.3, size of precipitates in vesicle grew twice as great as those formed below pH 12.0 because of the agglomeration and coalescence of vesicleswith time.

  • PDF

Preparation and Evaluation of Sustained-Release $Eudragit^{\circledR}$ Microcapsules Containing ${\beta}-Lactam$ Antibiotics ($Eudragit^{\circledR}$ 마이크로캅셀화에 의한 ${\beta}$-락탐계 항생물질의 방출제어제제 개발)

  • Han, Kun;Shin, Do-Su;Jee, Ung-Kil;Chung, Youn-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.4
    • /
    • pp.267-279
    • /
    • 1992
  • Microencapsulations of amoxicillin and cephalexin, using Eudragit RS, RL, E, S and L were investigated. The microcapsules were prepared by the solvent evaporation process in liquid paraffin phase, which is based on dispersion of acetone/isopropanol containing the drug in liquid paraffin. Aluminium tristearate was used as an additive for the preparation of microcapsules. The size distribution, dissolution test and observation by SEM were examined. Good reproducibility in microcapsule preparation was observed. The microcapsules obtained were spherical and free-flowing particles. The dissolution rates of amoxicillin and cephalexin from the microcapsules were considerably decreased as compared with those from amoxicillin and cephalexin powder, respectively. As the dispersing agents (aluminium tristearate) increased, the particle size of microcapsules decreased and the dissolution rate increased. In order to control the release rate of drugs, microcapsules were prepared by mixing Eudragit RS/RL or Eudragit S/L. As Eudragit RL ratio in microcapsule of Eudragit RS/RL increased, the dissolution rate increased. As Eudragit L ratio in microcapsule of Eudragit S/L increased, the dissolution rate increased. Furthermore, the release rates of drugs from Eudragit RS/L or RS/polyelthylene glycol 1540 (PEG 1540) were examined. The dissolution rate of drugs increased with increasing of Eudragit L or PEG 1540 ratio. In conclusion, the release rates of drugs from Eudragit RS/RL or RS/PEG 1540 microcapsule could be controlled, and these microcapsules will be convenient for reducing frequency of administration.

  • PDF

Effects of Temperature and Precursor-concentration on Characteristics of TiO2 Nanoparticles in Chemical Vapor Condensation Process -Part II: Analysis of Particle Formation Estimated by Reaction Factors (화학기상응축 공정에서 TiO2나노입자 특성에 미치는 반응온도와 전구체 농도의 영향 -Part II 분말형성에 대한 반응인자적 분석)

  • Lee, Chang-Woo;Yu, Ji-Hun;Im, Sung-Soon;Yun, Sung-Hee;Lee, Jai-Sung;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.328-332
    • /
    • 2003
  • Characteristics of $TiO_2$nanoparticles controlled by precursor flow rate and reaction temperature in chemical vapor condensation process were interpreted in the view of decisive reaction factors, i.e. supersaturation ratio, concentration of vapor molecule, collision frequency and rate, and residence time, which directly affect the particle size and size distribution in CVC reactor. As results, the increases of precursor flow rate and reaction temperature induced the increase in the average sizes of $TiO_2$ nanoparticles in CVC reactor by acceleration of coagulation growth due to the increase of collision between $TiO_2$vapor molecules and particles. The effects of reaction factors on the characteristics of$TiO_2$nanoparticles were discussed with considering particle formation process in CVC reactor under given process parameters.

The Properties of Strength Development of High Volume Fly Ash Concrete with Reduction of Unit Water Content (단위수량 저감에 따른 하이볼륨 플라이애시 콘크리트의 강도 발현 특성)

  • Choi, Yun-Wang;Park, Man-Seok;Choi, Byung-Keol;Oh, Sung-Rok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • In this study, strength development properties of high volume fly ash concrete was evaluated through compressive strength of concrete with reduction of unit water content. And concrete specimens were prepared according to target strength 3 level and variation of unit water content. As a result, the improved fluidity were obtained as a result of the ball bearing action of the spherical, the electrostatic repulsion and the particle size distribution of fly ash particles in case of using more than 50% fly ash. Through this, the mixture of fly ash has been shown to reduce the amount of water required in concrete. Also, the early strength of high volume fly ash concrete with reduction of unit water content was improved more about 66% than general concrete mixture.

Synthesis and Characterization of Nanosized of Spinel LiMn2O4 via Sol-gel and Freeze Drying Methods

  • Seyedahmadian, Masoud;Houshyarazar, Shadi;Amirshaghaghi, Ahmad
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.622-628
    • /
    • 2013
  • Nanocrystalline spinel lithium manganese oxide ($LiMn_2O_4$) powders with narrow-size-distribution, pure-phase particles, and high crystallinity with an average crystallite size of about 70 nm were synthesized at $600^{\circ}C$ for 6 h in air by freeze drying method. Spinel $LiMn_2O_4$ is also prepared by sol-gel using citric acid as a chelating agent. The influence of different parameters such as pH conditions, solvent, molar ratio of citric acid to total metal ions, calcination temperature, starting material on the structure, morphology and purity of this oxide was investigated. The results of sol-gel method show that pure $LiMn_2O_4$ with average crystallite size of about 130 nm can be produced from nitrate salts as starting materials at $800^{\circ}C$ for 6 h in air. The optimum pH and molar ratio of chelating agent to total metal ions are $4{\leq}pH{\leq}6$ and 1.0, respectively. A possible mechanism on the formation of the nanocrystallines synthesized by sol-gel was also discussed. At the end a comparison of the differences between two methods was made on the basis of x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) tests.

Friction Welding and AE Characteristics of Magnesium Alloy for Lightweight Ocean Vehicle (해양차량 경량화용 마그네슘합금의 마찰용접 및 AE 특성)

  • Kong, Yu-Sik;Lee, Jin-Kyung;Kang, Dae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, friction welded joints were constructed to investigate the mechanical properties of welded 15-mm diameter solid bars of Mg alloy (AZ31B). The main friction welding parameters were selected to endure reliable quality welds on the basis of visual examination, tensile tests, impact energy test, Vickers hardness surveys of the bonds in the area and heat affected zone (HAZ), and macrostructure investigations. The study reached the following conclusions. The tensile strength of the friction welded materials (271 MPa) was increased to about 100% of the AZ31B base metal (274 MPa) under the condition of a heating time of 1 s. The metal loss increased lineally with an increase in the heating time. The following optimal friction welding conditions were determined: rotating speed (n) = 2000 rpm, heating pressure (HP) = 35 MPa, upsetting pressure (UP) = 70 MPa, heating time (HT) = 1 s, and upsetting time (UT) = 5 s, for a metal loss (Mo) of 10.2 mm. The hardness distribution of the base metal (BM) showed HV55. All of the BM parts showed levels of hardness that were approximately similar to friction welded materials. The weld interface of the friction welded parts was strongly mixed, which showed a well-combined structure of macro-particles without particle growth or any defects. In addition, an acoustic emission (AE) technique was applied to derive the optimum condition for friction welding the Mg alloy nondestructively. The AE count and energy parameters were useful for evaluating the relationship between the tensile strength and AE parameters based on the friction welding conditions.