• Title/Summary/Keyword: Distribution of Water Quality

Search Result 901, Processing Time 0.035 seconds

Statistical Characteristics and Stochastic Modeling of Water Quality Data at the Influent of Daejeon Wastewater Treatment Plant (대전시 공공하수처리시설 유입수 수질자료의 통계적 특성 및 추계학적 모의)

  • Pak, Gijung;Jung, Minjae;Lee, Hansaem;Kim, Deokwoo;Yoon, Jaeyong;Paik, Kyungrock
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.38-49
    • /
    • 2012
  • In this study, we analyze statistical characteristics of influent water quality in Daejeon waste water treatment plant and apply a stochastic model for data generation. In the analysis, the influent water quality data from year 2003 to 2008, except for year 2006, are used. Among water quality variables, we find strong correlations between BOD and T-N; T-N and T-P; BOD and T-P; $COD_{Mn}$ and T-P; and BOD and $COD_{Mn}$. We also find that different water quality variables follow different theoretical probability distribution functions, which also depends on whether the seasonal cycle is removed. Finally, we generate the influent water quality data using the multi-season 1st Markov model (Thomas-Fiering model). With model parameters calibrated for the period 2003~2005, the generated data for 2007~2008 are well compared with observed data showing good agreement in general. BOD and T-N are underestimated by the stochastic model. This is mainly due to the statistical difference in observed data itself between two periods of 2003~2005 and 2007~2008. Therefore, we expect the stochastic model can be applied with more confidence in the case that the data follows stationary pattern.

Determining chlorine injection intensity in water distribution networks: a comparison of backtracking and water age approaches

  • Flavia D. Frederick;Malvin S. Marlim;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.170-170
    • /
    • 2023
  • Providing safe and readily available water is vital to maintain public health. One of the most prevalent methods to prevent the spread of waterborne diseases is applying chlorine injection to the treated water before distribution. During the water transmission and distribution, the chlorine will experience a reduction, which can imply potential risks for human health if it falls below the minimum threshold. The ability to determine the appropriate initial intensity of chlorine at the source would be significant to prevent such problems. This study proposes two methods that integrate hydraulic and water quality modeling to determine the suitable intensity of chlorine to be injected into the source water to maintain the minimum chlorine concentration (e.g., 0.2 mg/l) at each demand node. The water quality modeling employs the first-order decay to estimate the rate of chlorine reduction in the water. The first method utilizes a backtracking algorithm to trace the path of water from the demand node to the source during each time step, which helps to accurately determine the travel time through each pipe and node and facilitate the computation of time-dependent chlorine decay in the water delivery process. However, as a backtracking algorithm is computationally intensive, this study also explores an alternative approach using a water age. This approach estimates the elapsed time of water delivery from the source to the demand node and calculate the time-dependent reduction of chlorine in the water. Finally, this study compares the outcomes of two approaches and determines the suitable and effective method for calculating the chlorine intensity at the source to maintain the minimum chlorine level at demand nodes.

  • PDF

Reduction of Blue-green Algae and Its By-products using Intake of Deep Water in Summer (하절기 심층취수를 이용한 남조류 및 남조류 부산물질의 유입 저감)

  • Park, Hong-Ki;Jung, Eun-Young;Son, Hee-Jong;Choi, Jin-Taek
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.393-399
    • /
    • 2017
  • In order to determine the optimal water intake point, the distribution of blue-Green algae and water quality factors in relation to the depth of the Mulgum and Maeri stations located downstream of the Nakdong River were investigated from Jun. 2015 to Sep. 2016. When the current surface water intake system was converted to the deep water intake system, Chl-a concentration and blue-Green algae were reduced by 64.1% and 80.5%, respectively. Microcystin-LR was reduced by 50% to 100%, while geosmin and 2-MIB of the odorant substances were reduced by 42.9% and 11.8%, respectively. The water quality factors such as pH, water temperature, TOC and COD were gradually decreased by 30% in deep water. Therefore, if we used the deep water intake system selectively in the summer season when blue-Green algae masses occur, the concentration of the influx of blue-green algae and its by-products can be expected to decrease, leading to reduced operation costs in tap water production and improved of raw water quality.

Long-term Variation and Characteristics of Water Quality in the Asan Coastal Areas of Yellow Sea, Korea (아산연안 수질환경의 특성과 장기변동)

  • Park, Soung-Yun;Kim, Hyung-Chul;Kim, Pyoung-Joong;Park, Gyung-Soo;Park, Jeung-Sook
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1411-1424
    • /
    • 2007
  • Long-term trends and distribution patterns of water quality were investigated in the Asan coastal areas of Yellow Sea, Korea from 1975 to 2005. Water samples were collected at 3 stations and physicochemical parameters were analyzed including water temperature, salinity, suspended solids(SS), chemical oxygen demand(COD), dissolved oxygen(DO) and nutrients. Spatial distribution patterns were not clear among stations but the seasonal variations were distinct except COD, SS and nitrate. The trend analysis by principal component analysis(PCA) during twenty years revealed the significant variations in water quality in the study area, Annual water qualities were clearly discriminated into 4 clusters by PCA; year cluster 1988-1991, 1994-1997, and 1992-1993/1998-2005. By this multi-variate analysis we can summarize the annual trends as the followings; salinity, suspended solids and dissolved oxygen tended to increase from late 1980's, increased pH and COD from 1992, and decreased salinity and increased nitrogen and COD from 1990 due to the runoff frow agricultural lands causing eutrophication.

Water Quality Modeling for Intake Station by 2-dimensional Advection-Dispersion Model (2차원 이송-확산 모형을 이용한 취수장 유입 수질 예측)

  • Kim, Jae-Dong;Kim, Ji-Hoon;Kim, Young-Do;Song, Chang-Geun;Seo, Il-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.667-679
    • /
    • 2011
  • In this study, the influences of pollutant from Dae-po Stream and So-gam Stream located at the downstream of Nak-dong River on the water quality at Mul-geum water intake station were analyzed using RAMS model. Field measurements of velocity by ADCP, and water quality distribution of BOD and TP by water sampling were carried out to present the input and verification data for numerical simulations. The comparison between RAM2 and ADCP measurement, which aimed for the analysis of 2-D velocity distribution around Mul-geum water intake station showed that two results matched well along the spanwise direction. The prediction of pollutant concentration by RAM4 agreed fairly well with the measured data except for the points nearby right banks in the vicinity of tributary pollutant source. Flushing effect by the increase of mainstream discharge in Nak-dong River was analyzed to provide the damage mitigation in preparation for the accidental water pollution. With increasing mainstream discharge, high velocity and increased water quantity induced increasing dilution effect, thereby decreasing the inflow pollutant concentration rapidly.

The Characteristics of Water Quality in Mokpo Harbour(I) - Centering on organic pollution and dissolved oxygen in summer- (목포항의 수질 특성(I) - 하계의 유기물 오염과 용존산소를 중심으로 -)

  • 김광수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.1
    • /
    • pp.99-109
    • /
    • 1997
  • The in situ observations and the seawater analyses were conducted in July and August, 1996 for the purpose of describing the characteristics of organic pollution, dissolved oxygen distributions, and the evaluation of water quality in Mokpo harbour. The vertical density distribution of water column was found to be in stable structure with higher water temperature and lower salinity on surface layer at ebb tide in summer. In July, dissolved oxygen was shown to be oversaturated on surface and bottom layers, while in August, which was shown to be oversaturated on surface layer, and to be unsaturated on bottom layer as 68∼93% of saturation percentage. Dissolved oxygen of bottom layer in August was evaluated to be under the regular grades, based on Korean standards of seawater quality. In view of COD, the seawater quality of Mokpo harbour in summer was evaluated to be deteriorated due to organic wastes and graded to be the third class, and TSS of Mokpo harbour in summer was graded to be the second class, based on Korean standards of seawater quality. In particular, COD of surface layer in August was found to be under the regular grades. It is, therefore, necessary to take measures for the control of pollution loads and the proper management of seawater quality in Mokpo harbour. The distribution patterns of DO, COD, VSS and Chlorophyll-a on surface layer along the downstream center line from inner harbour to harbour entrance were similar to one another at ebb tide in August.

  • PDF

Analysis of Natural Organic Matter (NOM) Characteristics in the Geum River (금강 수계 자연유기물 특성 분석)

  • Yu, Soon-Ju;Kim, Chang-Soo;Ha, Sung-Ryong;Hwang, Jong-Yeon;Chae, Min-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2005
  • Natural organic matter(NOM) is defined as the complex matrix of organic material and abundant in natural waters. It affects the performance of unit operations for water purification. Several kinds of analytical indicators such as DOC, specific ultraviolet absorbance(SUVA), apparent molecular weight (AMW), fractionation and high performance size exclusive chromatography(HPSEC) have been used to understand characteristics and variations of NOM. This study aims to evaluate the characteristics of NOM in the Geum River system comprising with stream flows and reservoirs. It was identified that SUVA denoting the portion of humic substance in water ranged within 1.60~3.36. Using resin adsorbents, dissolved organic carbon(DOC) was fractionated into three classes: hydrophobic bases(HOB), hydrophobic acids(HOA) and hydrophilic substances(HI). HI dominates in all samples, collectively accounting for more than 62% of the DOC. HOA was the second dominated fraction and it varied considerably but accounted for about 30% of the DOC. The distribution of high molecular weight(HMW) measured by HPSEC being used to determine the molecular weight distribution of aquatic humic substances was 40.1% and 38.7% in reservoir and stream flow, respectively. The distribution of low molecular weight(LMW) in stream flow was 13.2% higher than that in reservoir. And apparent molecular weight less than 1KDa, which include the molecular weight of hydrophilic organic matter, occupied with 69.2% and 68.2% in stream flow and reservoir, respectively. While the molecular weight of 1 to 100 KDa including humic substances ranged with 18.6% and 21.6% in stream flow and reservoir, respectively. Seasonal variation of refractory dissolved organic carbon was similar to that of SUVA.

Spatial Distribution and Improvement of Water Quality in the Youngrang Lake (영랑호 수질의 공간적 분포 및 개선방안)

  • Huh, In-Ryang;Yi, Geon-Ho;Jeong, Won-Gu;Kwon, Jae-Hyouk
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.341-347
    • /
    • 2017
  • From 2014 to 2016 water quality survey results according to the location and depth of Youngrang Lake are as follows: Distribution of dissolved oxygen in the water depth was investigated by the middle section and the downstream 1st, 3rd, 5th, when investigating bottem 1m interval anoxic layer. In organic matter and nutrient concentration distribution COD upstream 2.8 mg/L, middle section 4.2 mg/L downstream 4.1 mg/L, more than two times higher in bottem layer and TP concentrations showed a similar trend with COD, upstream of 0.047 mg/L, middle section was 0.051 mg/L, downstream of 0.059 mg/L. There was a difference in salinity every survey period the average salinity is lowest with 28.5‰ when the second survey. And the highest with 32.1‰ in the fourth investigation. Korean trophic state index($TSI_{KO}$) were showed eutrophic conditions in the middle section and downstream else showed mesotrophic state in the entire period. In order to evaluate the cause of water pollution Youngrang lake, regression analysis of the relationship between salinity and DO, COD, TN, TP, Chl-a results, $R^2$ is from 0.63 to 0.95 Youngrang lake water quality was found to have a close relationship with salinity due to inflow of seawater. As a result, in order to improve the quality of Youngrang lake efficient incorporation of the amount of water through the seawater influent as it is considered the key.

Tap Water Quality in Seoul Metropolitan Area (수도권상수도의 수질-문제점과 대책)

  • 김동치
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.2
    • /
    • pp.15-21
    • /
    • 1990
  • Current analyses of tap water in Seoul metropolitan area prove the water is still safe, despite the Pollution of raw water source. However, it also significantly suggests that a feasibility study of apply, additional advanced technology to existing water treatment processes is needed in order to cope with future pollution. Also, the monitoring of water quality within private, multi-household buildings is important as the monitoring of public water distribution system.

  • PDF

Research on the development law of karst fissures and groundwater characteristic in Xintian County

  • Xin, Zhou;Tengfei, Yao;Can, Wang;Jian, Ou;Pengfei, Zheng;Kaihong, Chen;Xiting, Long
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.303-312
    • /
    • 2022
  • The natural hydrology and geological conditions of Xintian County was investigated, the development law of regional karst fissures was studied, the groundwater was collected and tested through a large-scale collection of groundwater to obtain the change law of chemical characteristics and water quality characteristics of groundwater, and the water quality evaluation was carried out for the regional karst groundwater in this paper. The results show that, the whole area is dominated by carbonate rock distribution areas, and the distribution of water systems is relatively developed. The strata are distributed from the Lower Paleozoic Cambrian to the Cenozoic Quaternary, and contain multiple first-order folds. The regional karst dynamic action is strong, and many tunnels or caves of different scales were shown, which are conducive to the enrichment of groundwater. Karst groundwater is neutral and alkaline water, the water is clear and transparent with good taste, and meets the national drinking water hygiene standards. The content of toxic trace elements and fluoride in the water source is generally lower than the limit value specified by the national standard and the accumulated toxic heavy metals is never found. The overall water quality is of good quality and suitable for the development and utilization of various purposes.