• Title/Summary/Keyword: Distribution of Compressive Residual Stress

Search Result 91, Processing Time 0.019 seconds

The Stress Distribution and Improvement of fatigue Strength for Notched Materials by Shot Peening (Shot peening 가공에 의한 노치재의 응력분포와 피로강도의 개선)

  • Lee, Seung-Ho;Kim, Hei-Song
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.120-126
    • /
    • 1998
  • Second step shot peening was applied on both smooth specimen and U-notch specimen in order to investigate the stress distribution and the improvement in fatigue strength. Various experiments and measurements such as rotary bending fatigue test and the measurement of compressive residual stress were performed. The results showed that the fatigue strength of second step shot peened specimens increased by 34 percent compared to that of unpeened ones. Compressive residual stress also considerably increased, which resulted in the increase of fatigue strength. finite element analysis showed that shot peening is effective in decreasing the bending stress by external force. The effectiveness of shot peening in reducing the compressive residual stress was anticipated by the superposition of the concentrated stress and the compressive residual stress.

  • PDF

A Study on the Analysis for Welding Residual Stress of Preflex Beam (PREFLEX BEAM 제작시의 용접부 역학적 특성에 관한 연구)

  • 방한서;주성민;안해영
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.65-71
    • /
    • 2003
  • Since the preflex beam is fabricated through welding, the pre-compressive stresses that should occur over the concrete pier are diminished by the welding residual stresses. Therefore welding residual stresses must be relieved during the fabrication. Therefore, the analysis and examination of the accurate welding residual stress distribution characteristics are necessary. In this study, accurate distribution of welding residual stress of the preflex beam is analyzed by the finite element method, using 2 dimensional and 3 dimensional elements. Further, the thermo-mechanical behavior of the preflex beam is also studied. After the finite element analysis, real distribution of welding residual stress is measured using the sectioning method, and then is compared with the simulation results. The distribution of welding residual stress by finite analysis agreed well with the experimental results.

A Study on Parameters Affected the Fatigue Crack Growth in Steel Structure Members( II ) -The Effect of Surface Residual Stress for Crack Closure- (강구조 부재의 피로균열성장에 미치는 제인자에 관한 연구( II ) -표면잔류응력이 균열닫힘에 미치는 영향-)

  • Choi, Young Jae;Kyung, Kab Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.3-11
    • /
    • 1996
  • To investigate the effect of fatigue crack growth due to the surface residual stress, it is measured the residual stress distribution by x-ray diffraction at the crack tip each constant crack growth in the notch specimens, and quantitively assessed the effect of crack closure caused to the distribution of compressive stress at the crack tip from evaluating crack openning stress using the finite element analysis. It is concluded that the degree of the residual stress distribution at the crack tip is decreased with increasing the crack length. From the fact that it is similar to the crack openning stress ratio, it is found that the compressive residual stress distribution and size is related to the crack closure effect and surface residual stress field with propagating crack in the notch specimens depends on the stress intensity factor range at the crack tip.

  • PDF

A Study on the Residual Stress Distribution of Pure Titanium Welding Material (순수티타늄 용접재의 잔류응력분포에 관한 연구)

  • Choi Byung-ki;Chang Kyung-chun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.8-13
    • /
    • 2004
  • The purpose of this paper is to investigate the welding residual stress distribution according to the constraint or non-constraint welding condition with titanium commonly using power station, aircraft, and ship. The measuring method of the residual stress was applied stress release rating method with strain gages and a potable strain meter. The x direction residual stress generally showed the tensile residual stress in case of res03int welding. On the other hand, the x direction residual stress under non-restraint welding were changed tensile stress into compressive stress on 15mm away from welding bead center. Also, the y direction residual stress generally showed the tensile residual stress in case of non-restraint welding and the y direction residual stress under restraint welding were changed tensile stress into compressive stress about 60mm away from welding bead center.

A study on residual stress distribution in surface grinding (평면연삭에서의 잔류응력 분포에 관한 연구)

  • 김경년;정재천;김기선
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.109-118
    • /
    • 1991
  • In this study, it is intended to investigate the effect of the grinding conditions such as table feed, down feed, cross feed of residual stress distribution. And this distribution is investigated upon the grinding direction and the its orthogonal direction at ground layers. The material is used carbon steel (SM20C) which usually used to motor axis. And in order to be considered as Bernoulli-Euler beam, the dimension of the specimen is appropriately designed. According as corroiding the ground surface, the residual stress layers are removed and strain which occured on account of unbalance of internal stress is detected by rosette-gate. Through A/D converter and computer, these values are saved and evaluated residual stress by stress-strain relation formula. Finally, these results are diagrammatized with Auto Cad. The results obtained are as follows. As the depth from the ground surface increases in grinding direction and its orthogonal direction, tensile residual stress exists in the surface, and subsequently it becomes compressive residual stress as it goes downward. As the table feed, the cross feed and the down feed increase, maximum residual stress is transformed form the tensile to the compressive.

  • PDF

An Analysis of the Fatigue Crack Opening Behaviour in the Welding Residual Stress Field by the Finite Element Method (압축잔류응력장을 전파하는 피로균열의 개구거동의 유한요소법을 이용한 해석적 검토)

  • 박응준;김응준;유승현
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.77-83
    • /
    • 2003
  • The finite element analysis was performed for the cracks existing in residual stress fields in order to investigate the effects of configuration of residual stress distribution to the fatigue crack opening behaviour. And the variation of stress distributions adjacent to the crack caused by uploading was examined. The finite element model with contact elements for the crack plane and plane stress elements for the base material and the analytical method based on the superposition principle to estimate crack opening behaviour and the stress distribution adjacent to the crack subjected to uploading were used. The results of the analysis showed that crack opening behaviors and variations of stress distribution caused by uploading were changed depending on the configuration of residual stress distribution. When the crack existed in the region of compressive residual stress and the configuration of compressive residual stress distribution were inclined, a partial crack opening just behind of a crack tip occurred during uploading. Based on the above results, it was clarified that the crack opening behaviour in the residual stress field could be predicted accurately by the finite element analysis using these analytical method and model.

The Finite Element Analysis of the Mandrel Shape's Influence on the Residual Stress Distribution by Cold Expansion Method (형상봉의 모양이 홀확장 잔류응력 분포에 미치는 영향에 대한 유한요소해석)

  • Jang, Jae-Soon;Cho, Myoung-Rae;Yang, Won-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.127-133
    • /
    • 2006
  • Cold expansion method is used to protect a fatigue fracture from fastener hole in the structure and aerospace industry. Cold expansion is that an oversized tapered mandrel goes through the hole and produces a compressive residual stress as well as plastic deformation around the hole. Here, mandrel shapes are one of the factors which are influenced on the residual stress distribution by cold expansion method. This paper, according to mandrel shapes (diameter of mandrel, length of mandrel and length of taper), we are performed a finite element analysis of residual stress distribution by cold expansion method. From this study, it has been found that diameter of mandrel and length of taper are an important factor which was generated a low compressive residual stress surround of fastener hole by cold expansion method.

An Experimental Study on the Residual Stress Distribution at Circumferential Welds in Pipes (파이프 원주방향 용접부의 잔류응력분포 특성에 관한 실험적 연구)

  • Namkoong, Jae-Gwan;Hong, Jae-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 1991
  • A knowledge of the resdual stress distribution at circumferential weldments can normally increase the accuracy of a fracture assessment in pipe line. In this paper, we present the measurements about the residual stress distributions at three kinds of circumferential butt welded pipes using the holl drilling strain gage method. By this experiment, we have obtined the following characteristics. At the inner surface of the pipe region near the center line of welding is under high tensile residual stress. However, as the distance from the center line of welding increases, the tensile component decreases and finally becomes compressive residual stress at region far away from the center line of welding. The longitudinal residual stress at the outer surface is compressive regardless of the diameter of pipe and the circumferential stress is changed from compressive to tensile as pipe diameter increases. The results also demonstrate that the residual stress is mainly caused by self-restraint bending force in the pipe welding.

  • PDF

A Study on the Residual Stresses by the Hole Drilling Measuring in the WeldZone (용접부의 천공 측정법에 의한 잔류 응력에 관한 연구)

  • NamKoong, Chai-Kwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.115-121
    • /
    • 2008
  • A knowloedge of the residual stress distribution at circumferential welds can increase the prediction accuracy of a fracture assessment in pipe lines. In this study, in order to predict the residual stress distribution in the circumferential butt-welded pipes were measured, using the hole-drilling strain gauge method. Their practical applications were performed in to two kinds of pipes. As the results, the following characteristics were found. On the inner surface of pipes, the circumferential and axial residual stresses were both tensile near the center line of welding and both of them changed from tensile to compressive as the distance from the center line increased. On the outer surface, however, the circumferential residual stress was shown to be tensile wile the axial residual stress was compressive near the center line of welding, and later they were revered at the region far away from the centerline.

Residual Stress Distribution according to Working Conditions in Grinding Operation (연삭가공시 연삭조건에 따른 잔류응력 분포에 관한 연구)

  • Cheong, Chae-Cheon;Cha, Il-Nam;Kim, Gyung-Nyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.23-28
    • /
    • 1990
  • This study is to investigate the magnitude, direction and distribution of residual stresses in surface ground plate according to working conditions. The specimens were made of structural carbon steel and were machined in various grinding conditions. These were divided in two groups; heat-treated materials and non-heat-treated materials. In each working condition, let the ground specimen generate displacements using deflection-etching techniques. At the same time, these displacements were precisely measured with electronic micrometer. Through the relation formula between the plane stress and strain, which was derived using these measured data, the values of residual stress are calculated, and the results are analyzed. These results are as follows : 1. According to the working conditions in this experiment, it can be seen that the distribution of residual stress generally had same trend and the maximum residual stress remained in 20~30 ((${\mu}m$) beneath the surface. 2. It is observed that compressive residual stress changes into tensile stress in 5~20 (${\mu}m$) beneath the surface. It is suggested that such phenomenon is originated from the friction effect in grinding process. 3. As the hardness increases by the heat treatment, residual stress increases. 4. As the fatigue strength increases by the compressive residual stress, it is desirable that the dowm feed and table feed reduce. 5. It can be seen that the more great the down feed and table feed increase, the more close the changing point, where the stress changed from compressive to tensile, is colse to the surface. This is due to the resultant effects of the grinding temperature and resistence are larger than the effect of the friction.

  • PDF