• Title/Summary/Keyword: Distribution network expansion planning

Search Result 14, Processing Time 0.018 seconds

Active Distribution Network Expansion Planning Considering Distributed Generation Integration and Network Reconfiguration

  • Xing, Haijun;Hong, Shaoyun;Sun, Xin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.540-549
    • /
    • 2018
  • This paper proposes the method of active distribution network expansion planning considering distributed generation integration and distribution network reconfiguration. The distribution network reconfiguration is taken as the expansion planning alternative with zero investment cost of the branches. During the process of the reconfiguration in expansion planning, all the branches are taken as the alternative branches. The objective is to minimize the total costs of the distribution network in the planning period. The expansion alternatives such as active management, new lines, new substations, substation expansion and Distributed Generation (DG) installation are considered. Distribution network reconfiguration is a complex mixed-integer nonlinear programming problem, with integration of DGs and active managements, the active distribution network expansion planning considering distribution network reconfiguration becomes much more complex. This paper converts the dual-level expansion model to Second-Order Cone Programming (SOCP) model, which can be solved with commercial solver GUROBI. The proposed model and method are tested on the modified IEEE 33-bus system and Portugal 54-bus system.

Capacity Expansion Modeling of Water-distribution Network using GIS, VE, and LCC (GIS와 VE, LCC 개념에 의한 동적 상수도관망 대안 결정)

  • Kim, Hyeng-Bok
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1999.12a
    • /
    • pp.21-25
    • /
    • 1999
  • Planning support systems(PSS) add more advanced spatial analysis functions than Geographic information systems(GIS) and intertemporal functions to the functions of spatial decision support systems(SDSS). This paper reports the continuing development of a PSS providing a framework that facilitates urban planners and civil engineers in conducting coherent deliberations about planning, design and operation & maintenance(O&M) of water-distribution networks for urban growth management. The PSS using dynamic optimization model, modeling-to-generate-alternatives, value engineering(VE) and life-cycle cost(LCC) can generate network alternatives in consideration of initial cost and O&H cost. Users can define alternatives by the direct manipulation of networks or by the manipulation of parameters in the models. The water-distribution network analysis model evaluates the performance of the user-defined alternatives. The PSS can be extended to include the functions of generating sewer network alternatives, combining water-distribution and sewer networks, eventually the function of planning, design and O&H of housing sites. Capacity expansion by the dynamic water-distribution network optimization model using MINLP includes three advantages over capacity expansion using optimal control theory(Kim and Hopkins 1996): 1) finds expansion alternatives including future capacity expansion times, sizes, locations, and pipe types of a water-distribution network provided, 2) has the capabilities to do the capacity expansion of each link spatially and intertemporally, and 3) requires less interaction between models. The modeling using MINLP is limited in addressing the relationship between cost, price, and demand, which the optimal control approach can consider. Strictly speaking, the construction and O&M costs of water-distribution networks influence the price charged for the served water, which in turn influence the. This limitation can be justified in rather small area because price per unit water in the area must be same as that of neighboring area, i.e., the price is determined administratively. Planners and engineers can put emphasis on capacity expansion without consideration of the relationship between cost, price, and demand.

  • PDF

An Adaptive Genetic Algorithm Based Optimal Feeder Routing for Distribution System Planning (적응 유전알고리즘을 이용한 배전계통 계획의 급전선 최적경로 선정)

  • Kim, Byung-Seop;Kim, Min-Soo;Shin, Joong-rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.2
    • /
    • pp.58-66
    • /
    • 2001
  • This paper presents an application of a newly designed Adaptive Genetic Algorithm (AGA) to solve the Optimal Feeder Routing (OFR) problem for distribution system planning. The main objective of the OFR problem usually is to minimize the total cost that is the sum of investment costs and system operation costs. We propose a properly designed AGA, in this paper, which can handle the horizon-year expansion planning problem of power distribution network in which the location of substation candidates, the location and amount of forecasted demands are given. In the proposed AGA, we applied adaptive operators using specially designed adaptive probabilities. we also a Simplified Load Flow (SLF) technique for radial networks to improve a searching efficiency of AGA. The proposed algorithm has been evaluated with the practical 32, 69 bus test system to show favorable performance. It is also shown that the proposed method for the OFR can also be used for the network reconfiguration problem in distribution system.

  • PDF

Optimal Feeder Routing for Distribution System Planning Using a Heuristic Strategy (휴리스틱 탐색전략을 이용한 배전계통 계획의 급전선 최적 경로 선정)

  • Choi, Nam-Jin;Kim, Byung-Seop;Shin, Joong-Rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.11
    • /
    • pp.566-574
    • /
    • 2000
  • This paper propose a heuristic algorithm based on the Branch-Exchange (BE) method to solve Optimal feeder Routing(OFR) problem for the distribution system planning. The cost function of the OFR problem is consisted of the investment cost representing the feeder installation and the system operation cost representing the system power loss. We propose a properly designed heuristic strategy, which can handle the horizon-year expansion planning problem of power distribution network. We also used the loop selection method which can define the maximum loss reduction in the network to reduce calculation time, and proposed a new index of power loss which is designed to estimate the power loss reduction in the BE. The proposed index, can be considered with both sides, the low voltage side and voltage side branch connected with tie one. The performances of the proposed algorithms and loss index were shown with 32, 69 example bus system.

  • PDF

CAPACITY EXPANSION MODELING OF WATER SUPPLY IN A PLANNING SUPPORT SYSTEM FOR URBAN GROWTH MANAGEMENT (도시성장관리를 위한 계획지원체계에서 상수도의 시설확장 모델링)

  • Hyong-Bok, Kim
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1995.12a
    • /
    • pp.9-21
    • /
    • 1995
  • A planning support system enhances our ability to use water capacity expansion as an urban growth management strategy. This paper reports the development of capacity expansion modeling of water supply as part of the continuing development of such a planning support system (PEGASUS: Planning Environment for Generation and Analysis of Spatial Urban Systems) to incorporate water supply, This system is designed from the understanding that land use and development drive the demand for infrastructure and infrastructure can have a significant influence on the ways in which land is developed and used. Capacity expansion Problems of water supply can be solved in two ways: 1) optimal control theory, and 2) mixed integer nonlinear programming (MINLP). Each method has its strengths and weaknesses. In this study the MINLP approach is used because of its strength of determining expansion sizing and timing simultaneously. A dynamic network optimization model and a water-distribution network analysis model can address the dynamic interdependence between water planning and land use planning. While the water-distribution network analysis model evaluates the performance of generated networks over time, the dynamic optimization model chooses alternatives to meet expanding water needs. In addition, the user and capacity expansion modeling-to-generate-alternatives (MGA) can generate alternatives. A cost benefit analysis module using a normalization technique helps in choosing the most economical among those alternatives. GIS provide a tool for estimating the volume of demanded water and showing results of the capacity expansion model.

  • PDF

A Decision Support System for an Optimal Transportation Network Planning in the Third Party Logistics

  • Park, Yong-Sung;Choi, Hyung-Rim;Kim, Hyun-Soo;Park, Nam-Kyu;Cho, Jae-Hyung;Gang, Moo-Hong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.240-257
    • /
    • 2006
  • In an effort to gain competitiveness, recently many companies are trying to outsource their logistics activities to the logistics specialists, while concentrating on their core and strategic business area. Because of this trend, the third party logistics comes to the fore, catching people's attention, and expanding its market rapidly. Under these circumstances, the third party logistics companies are making every effort to improve their logistics services and to develop an information system in order to enhance their competitiveness. In particular, among these efforts one of the critical parts is the decision support system for effective transportation network planning. To this end, this study has developed an efficient decision support system for an optimal transportation network planning by comprehensively considering the transportation mode, routing, assignment, and schedule. As a result of this study, the new system enables the expansion of the third party logistics companies' services including the multimodal transportation, not to mention one mode of transportation, and also gets them ready to plan an international transportation network.

  • PDF

Aging Analysis and Reconductoring of Overhead Conductors for Radial Distribution Systems Using Genetic Algorithm

  • Legha, Mahdi Mozaffari;Mohammadi, Mohammad
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2042-2048
    • /
    • 2014
  • In medium voltage electrical distribution networks, reforming the loss reduction is important, and in line with this, the issue of system engineering and use of proper equipment Expansion of distribution systems results in higher system losses and poor voltage regulation. Therefore, an efficient and effective distribution system has become more important. So, proper selection of conductors in the distribution system is crucial as it determines the current density and the resistance of the line. Evaluation of aging conductors for losses and costs imposed in addition to the careful planning of technical and economic networks can be identified in the network design. In this paper the use of imperialist competitive algorithm; genetic algorithm; is proposed to optimal branch conductor selection and reconstruction in radial distribution systems planning. The objective is to minimize the overall cost of annual energy losses and depreciation on the cost of conductors to improve productivity given the maximum current carrying capacity and acceptable voltage levels. Simulations are carried out on 69-bus radial distribution network using genetic algorithm approaches to show the accuracy as well as the efficiency of the proposed solution technique.

Reliability Evaluation of Distribution System Via Analytic Network Process (망상형 의사결정법에 의한 배전계통 신뢰성 평가)

  • Kim, Yong-Ha;Lee, Buhm;Choi, Sang-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.10
    • /
    • pp.447-453
    • /
    • 2001
  • This paper presents the unified reliability evaluation technique of distribution system. To calculate accurate reliabi1ity and reliability indices which can consider line limitation and voltage drop of distribution system, we employed the deterministic evaluation technique with PLOC technique. And to evaluate the distribution system, we presented the evaluating method which is based on Analytic network process. As a result, we can evaluate the distribution system and build the expansion planning of the system considering system load and reliability indices.

  • PDF

Development of Optimal Substation Expansion Planning Method using ANP (ANP에 의한 최적 변전소 신.증설계획법의 개발)

  • Kim, Yong-ha;Lee, Buhm;Choi, Sang-kyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.385-390
    • /
    • 2002
  • This paper presents a substation expansion planning method with quantitative analysis using ANP. To calculate the reliability factor and economy factor of the system, reliability indices and total construction cost is used. With these factors, new ANP model which select the best plan either economy or reliability among various alternatives is developed. This model can assist the decision making for the system planner. The usefulness of the method is verified by applying it to the large-scaled distribution system.

Symbiotic Framework for Campus Core and Modern Expansion A Case Study of Princeton University Campus, Princeton USA

  • Han, Gwang Ya;Kim, Hong Ill;Lee, Hee Won;Kim, Hwan
    • Architectural research
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2006
  • Campus core is an essential element in a university's physical environment for symbolic importance of high educational philosophy as well as hierarchical significance of campus structure. Yet, as modern expansion develops into and out of campus core, a challenging design and planning problem for a growing university is how to integrate a new development into the existing core structure and how to expand the fast-growing development beyond the core while maintaining a symbiotic harmony between the campus core and the modern expansion. Such challenge addresses four design frameworks for symbiotic development of the campus core and the modern expansion: (1) building grouping with territorial proximity; (2) building design rules for form and texture; (3) open space network with pedestrian walkway; (4) use-programming for on-campus student community. This study aims to explore these issues with in-depth case study of the Princeton University campus in Princeton, New Jersey in the United States. The study concludes that the Princeton campus is a result from successful synthesis of all the complex design elements, especially in relationship between the old and the new; and adds further that the development of a modern university campus requires a comprehensive plan that takes into account the older buildings when conceiving the new in symbiotic relationship along with open space network as well as functional program distribution.