• Title/Summary/Keyword: Distribution Tool

Search Result 1,551, Processing Time 0.031 seconds

CGHscape: A Software Framework for the Detection and Visualization of Copy Number Alterations

  • Jeong, Yong-Bok;Kim, Tae-Min;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.126-129
    • /
    • 2008
  • The robust identification and comprehensive profiling of copy number alterations (CNAs) is highly challenging. The amount of data obtained from high-throughput technologies such as array-based comparative genomic hybridization is often too large and it is required to develop a comprehensive and versatile tool for the detection and visualization of CNAs in a genome-wide scale. With this respective, we introduce a software framework, CGHscape that was originally developed to explore the CNAs for the study of copy number variation (CNV) or tumor biology. As a standalone program, CGHscape can be easily installed and run in Microsoft Windows platform. With a user-friendly interface, CGHscape provides a method for data smoothing to cope with the intrinsic noise of array data and CNA detection based on SW-ARRAY algorithm. The analysis results can be demonstrated as log2 plots for individual chromosomes or genomic distribution of identified CNAs. With extended applicability, CGHscape can be used for the initial screening and visualization of CNAs facilitating the cataloguing and characterizing chromosomal alterations of a cohort of samples.

First Simultaneous Visualization of SO2 and NO2 Plume Dispersions using Imaging Differential Optical Absorption Spectroscopy

  • Lee, Hanlim;Noh, Youngmin;Kwon, Soonchul;Hong, Hyunkee;Han, Kyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1191-1194
    • /
    • 2014
  • Imaging Differential Optical Absorption Spectroscopy (Imaging-DOAS) has been utilized in recent years to provide slant column density (SCD) distributions of several trace gas species in the plume. The present study introduces a new method using Imaging-DOAS data to determine two-dimensional plume structure from the plume emissions of power plant in conditions of negligible aerosol effects on radiative transfer within the plume. We demonstrates for the first time that two-dimensional distributions of sulfur dioxide ($SO_2$) and nitrogen dioxide ($NO_2$) in power plant emissions can be determined simultaneously in terms of SCD distribution. The $SO_2$ SCD values generally decreased with increasing distance from the stack and with distance from the center of the plume. Meanwhile, high $NO_2$ SCD was observed at locations several hundred meters away from the first stack due to the ratio change of NO to $NO_2$ in NOx concentration, attributed to the NO oxidation by $O_3$. The results of this study show the capability of the Imaging-DOAS technique as a tool to estimate plume dimensions in power plant emissions.

Probability-Based Estimates of Basic Design wind Speeds in Korea (확률에 기초한 한국의 기본 설계풍속 추정)

  • 조효남;차철준;백현식
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.62-72
    • /
    • 1989
  • This study presents rational methods for probability-based estimates of basic design wind speeds in Korea and proposes a risk-based nation-wide map of design wind speeds. The paper examines the fittings of the extreme Type I mode to largest yearly non-typhoon wind data from long-term records, and to largest monthly non-typhoon wind data from short-term records. For the estimation of the extreme typhoon wins speed distribution, an indirect analytical method based on a Monte-Carlo simulation is applied to typhoon-prone regions. The basic desig wind speeds for typhoon and non-typhoon winds at the sites of concern are made to be obtained from the mixed model given as a product of the two distributions. The results of this study show that the proposed models and methods provide a practicable tool for the development of the risk-based basic design wind speed and the design wind map from short-term station records currently available in Korea.

  • PDF

LIQUID FLOW AND EVAPORATION SIMULATION OF CRYOGENIC FLUID IN THE WALL OF CRYOGENIC FLUID CARGO CONTAINMENT SYSTEM (극저온 유체 화물창 방벽 내의 액체유동 및 기화 시뮬레이션)

  • Park, Bum-Jin;Lee, Hee-Bum;Rhee, Shin-Hyung;Bae, Jun-Hong;Lee, Kyung-Won;Jeong, Wang-Jo;An, Sang-Jun
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.9-18
    • /
    • 2009
  • The cargo containment system (CCS) for ships carrying cryogenic fluid consists of at least two levels of barriers and insulation layers. It is because, even though there is a small amount of leak through the primary barrier, the liquid tight secondary barrier blocks further leakage of the cryogenic fluid. However, once the secondary barrier is damaged, it is highly possible that the leaked cryogenic fluid flows through the flat joint made of glass wool and reaches the inner hull of the ship. The primary objective of the present study is to investigate the influence of the damage extent in the secondary barrier on the amount of leaked cryogenic fluid reaching the inner hull and the temperature distribution there. Simulation results using a computational fluid dynamics tool were compared with the experimental data for the leaked cryogenic fluid flow and evaporation in the secondary insulation layer. The experimental and computational results suggest that, unless there is a massive leak, the cryogenic fluid mostly evaporates in the insulation layer and does not reach the inner hull in the state of liquid.

Geographical Classification of the World Folk Headdress Types (세계 민족 헤드드레스 유형의 지역별 분류)

  • Yoo, Tai-Soon;Kim, Jee-Hee
    • Fashion & Textile Research Journal
    • /
    • v.1 no.3
    • /
    • pp.246-251
    • /
    • 1999
  • Headdress which adorns the head has been used not only as a type of dress but also as a vehicle to express the human's mentality and a tool to convey ideas. This study first examines the type of headdress observed in the world folk costumes and investigates their geographical distribution and aims to examine how the types of headdress are inter-related to the peoples' natural environments, way of life and cultural background such as religion and aesthetic, ethical standards. Headdress used as important elements of many peoples' folk costumes can be categorized into scarf-type, hat-type and adornment-type. Veil-type, the one of scarf-types, was developed in Southwestern Asia and Arabic Africa influenced by natural and religious factors. This type is more simplified in Turkey and Eastern Europe and only covers head and neck in the former and only head in the latter while also being called 'headkerchief-type'. Hat-type is observed in many different parts of the world. Adornment-type has been used to symbolized one's noble social status and authority in societies dominated by shamanistic cultural background; it was also used in Far East out of the motivation to fulfil one's aesthetic desire. Headdress though it was originally made from the idential purpose of wearing, has developed into the various types affected by each people's natural environments, emotion and ways of life.

  • PDF

Multiphase Simulation of a Liquid Jet in a Lab-scale Ramjet Combustor (모형 램젯 연소기에서 액체제트의 다상유동 해석)

  • Oh, Jeong-Seog;Lee, Won-Nam;Lee, Jong-Geun;Santavicca, Dominique A.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.386-392
    • /
    • 2010
  • The multiphase simulation of a liquid jet in a lab-scale ramjet combustor with a plain orifice type injector was studied with a commercial CFD tool, a FLUENT program. The objectives of the current study are to analysis the breakup characteristics of a hexane liquid jet in a cross flow and to derive the correlation between flow conditions and drag force coefficients in a test section. From the result of a numerical simulation, we concluded that a DPM and Realizable $k-{\varepsilon}$ model with an enhanced wall treatment were available to simulate the multiphase flow simulation. And the calculated distribution of a hexane vapor concentration was well-matched with experimental results.

  • PDF

Performance analysis tool for reinforced concrete members

  • Esmaeily, Asad;Peterman, Robert J.
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.331-346
    • /
    • 2007
  • A computer program was developed to analyze the non-linear, cyclic flexural performance of reinforced concrete structural members under various types of loading paths including non-sequential variations in axial load. This performance is significantly affected by the loading history. Different monotonic material models as well as hysteresis rules for confined and unconfined concrete and steel, some developed and calibrated against test results on material samples, were implemented in a fiber-based moment-curvature and in turn force-deflection analysis. One of the assumptions on curvature distribution along the member was based on a method developed to address the variation of the plastic hinge length as a result of loading pattern. Functionality of the program was verified by reproduction of analytical results obtained by others for several cases, and accuracy of the analytical process and the implemented models were evaluated against the experimental results from large-scale reinforced concrete columns tested under the analyzed loading cases. While the program can be used to predict the response of a member under a certain loading pattern, it can also be used to examine various analytical models and methods or refine a custom material model against test data.

Robust Design of Gate Locations and Process Parameters for Minimizing Injection Pressure of an Automotive Dashboard (자동차 대시보드의 사출압력 최소화를 위한 게이트 위치와 공정조건의 강건설계)

  • Kim, Kwang-Ho;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.73-81
    • /
    • 2014
  • In this paper, multiple gate locations and process conditions under concern are automatically optimized by considering robustness to minimize the injection pressure required to mold an automotive dashboard. Computer simulation-based experiments using orthogonal arrays(OA) and a design-range reduction algorithm are consolidated into an iterative search scheme, which is then used as a tool for the optimization process. The robustness of a design is evaluated using an OA-based simulation of process fluctuations due to noise as well as the signal-to-noise ratio. The optimal design solution for the automotive dashboard shows that the robustness of the injection pressure is significantly improved when compared to the initial design. As a result, both the die clamping force and the pressure distribution in the part cavity are also much improved in terms of their robustness.

High Speed Milling of Titanium Alloy (Ti 합금의 고속가공시 밀링특성에 관한 연구)

  • Chen, Ming;Lee, Young-Moon;Yang, Seung-Han;Jang, Seung-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.34-39
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. The chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number of shear ribbons and bigger shear angle than that at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability mot depression of temperature increment anti-fatigability as well as surface roughness. The burrs always exist both at low cutting speed and at high cutting speed. So the deburring process should be arranged for milling titanium alloy in my case.

Guided Wave Mode Identification Using Wavelet Transform (웨이블릿 변환을 이용한 유도초음파의 모드 확인)

  • Ik-Keun Park
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.94-100
    • /
    • 2003
  • One of unique characteristics of guided waves is a dispersive behavior that guided wave velocity changes with an excitation frequency and mode. In practical applications of guided wave techniques, it is very important to identify propagating modes in a time-domain waveform for determination of detect location and size. Mode identification can be done by measurement of group velocity in a time-domain waveform. Thus, it is preferred to generate a single or less dispersive mode But, in many cases, it is difficult to distinguish a mode clearly in a time-domain waveform because of superposition of multi modes and mode conversion phenomena. Time-frequency analysis is used as efficient methods to identify modes by presenting wave energy distribution in a time-frequency. In this study, experimental guided wave mode identification is carried out in a steel plate using time-frequency analysis methods such as wavelet transform. The results are compared with theoretically calculated group velocity dispersion own. The results are in good agreement with analytical predictions and show the effectiveness of using the wavelet transform method to identify and measure the amplitudes of individual guided wave modes.