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I Abstract }——

One of unique characteristics of guided waves is a dispersive behavior that guided wave velocity changes with an excitation
frequency and mode. In practical applications of guided wave techniques, it is very important to identify propagating modes

in a time-domain waveform for determination of defect location and size. Mode identification can be done by measurement
of group velocity in a time-domain waveform. Thus, it is preferred to generate a single or less dispersive mode But, in
many cases, it is difficult to distinguish a mode clearly in a time-domain waveform because of superposition of multi
modes and mode conversion phenomena. Time-frequency analysis is used as efficient methods to identify modes by presenting
wave energy distribution in a time-frequency. In this study, experimental guided wave mode identification is carried out
in a steel plate using time-frequency analysis methods such as wavelet transform. The results are compared with theoretically
calculated group velocity dispersion curves. The results are in good agreement with analytical predictions and show the
effectiveness of using the wavelet transform method to identify and measure the amplitudes of individual guided wave
modes.

Key Words : Guided Wave(-3-%=.2-2-5), Mode Identification( 2. = 2}¢1), Wavelet Transform(|o1&3#2h), Group Velocity(4),
Dispersion Diagram{ EAH1T)

1. Introduction fully applied methods for long-range nondestructive
inspection. Dispersion is a very unique characteristic of

The guided wave techniques extensively and success- guided waves; the velocity of guided waves changes
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with excitation mode and frequency. Wave penetration
power, attenuation, and sensitivity to defects also highly
depend on frequency and mode. Thus, in applications of
guided wave techniques, it is very critical to identify
propagating modes in a structure for determination of
defect location and size. A common and simple way to
identify guided wave modes is measuring group velocity
under certain excitation conditions such as frequency,
structure geometry, and wave incident angle. However,
in many cases, it is not easy to generate a single mode
or identify the modes in a time-domain waveform due to
superposition of multi modes and mode conversion due
to scattering from defects or a boundary of structures.

Recently, there has been considerable interest in the
application of wavelet transform™ to signal processing
application. In contrast to the Fourier Transform,
whereby a time domain signal is decomposed into its
constituent frequency components without regard to the
temporal order of the components, the wavelet analysis
uses sets of scaled basis functions that can provide a
decomposition in terms of both time and frequency
analysis have been found for interpretation of acoustic,
sonar, and radar signals and data compression. Signifi-
cant number of studies has been carried out on the
signal analysis for guided wave mode identification™.
Fourier transform is a well-known method and has been
widely used to analyze frequency component in the
entire signal at once. But, Fourier transform provides
information only on a frequency spectrum which is not
dependent on time. Thus, it is not suitable for analyzing
signals varying with time. For guided waves, several
modes can be generated in a frequency range and cach
mode travels at different velocities. Thus, it is impos-
sible to extract frequency component of each mode
using the Fourier transform. In order to overcome this
problem, time-frequency analysis methods such as
Wigner-Ville distribution, wavelet transform (WT), and
Short Time Fourier Transform (STFT) have been devel-
oped and applied to time-varying signals analysis®”. In
the time-frequency analysis methods, the wave energy
distribution is represented in a time-frequency plane. A
time-domain signal is split into a series of small pieces
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using a wavelet function and each piece is Fourier
transforms. Consequently, the frequency spectrum of a
small portion of the time-domain signal is displayed in
time seduence. With a known wave travel distance, the
time-frequency information can be transferred into the
group velocity- frequency domain. By comparing the
wave energy distribution obtained from WT with the
theoretically calculated dispersion curves, modes in the
waveform can be identified.

In this study, first, theoretical wavelet transform is
applied to guided wave mode identification in structures
such as a plate. The group velocity-frequency represen-

tations obtained by each method are then compared with

theoretically calculated dispersion curves in the
structures.
2. Mode Identification Analysis
2.1 Wavelet Transform(WT)
Classical Fourier analysis provides a spectral

representation that is independent of time. However,
many vibration processes exhibit nonstationary behavior,
which cannot be effectively described using this
analysis. A number of different time-variant methods
exist for The continuous wavelet transform(CWT) or
continuous-time wavelet transform of an arbitrary
function f(t) as given by Strang and Nguyen(”) is
defined nonstationary processes, including: adaptive
techniques(short-time Fourier transform), time-frequency
techniques (Wigner-Ville distribution), and time-scale
procedures (wavelet transform). A fundamental differ-
ence between wavelet analysis and other methods is that
instead of seeking to decompose a signal into its
harmonics, which are global functions, the signal is
broken down into local functions called wavelets. The
concept of wavelet analysis has many different origins
from mathematics to signal processing. For the sake of
completeness, a brief inﬁoduction to the relevant
wavelet theory is given in this section.

The CWT or continuous-time wavelet transform of an
arbitrary function f(t) as given by Strang and Nguyen""
is defined
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including the analyzing function

o 1 t=b
7os(d == o(-2) @

as wavelet functions, With the position variable b and

the scale variable a, where a)0 and * denotes complex
conjugation. The function ¥(#) is the mother wavelet
(analyzing wavelet).

()

It satisfies the admissibility condition on

o 2
fwi%%Lm<m 3)
where ¥ (w) denote the Fourier transform ¥(g) of
defined by
Ko)= [ _AH e “at @

Although there are many choices for the analyzing
wavelet, we adopt the Gabor wavelet, since it provides
the best time frequency resolution as confirmed by the

uncertainty principle.
The Gabor wavelet is expressed as®

() = %\E : exp[—%(“’T‘”)z]exp(iwor)

&)
and its Fourier transform is expressed as
(Lly:
%@hﬁ?&?mbﬁzmﬂmﬂ ©)

where @ and ¥ are positive constants. Although the
Gabor wavelet does not satisfy the admissibility
condition(3) in the strict sense, it approximately satisfies
the condition if ¥ is sufficiently large.

In this study, we set y= m/m=5.336 according
to Morlet. If eq (5) is substituted into eq (1) it is
understood that the WT using the Gabor wavelet has a
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similar form to the Fourier transform with Gaussian

windowing. Hence we set @, =2 7 such that 1/q takes

the same value as. the frequency w/(27).
Fig. 1 shows the Gabor wavelet and its Fourier

transform. the Gabor wavelet ¥ g(“’) is localized around
the time (t)=0, and its Fourier transform ¥ g(‘”) is
localized around the angular frequency w= wy. It is
easily understood that the function ¥ é( =oa) g
localized around t=b and that its Fourier transform
[aexp(-ib®) ¥, “*] is localized around w= wy/a .
Hence the magnitude of WT, |(W/)(a, b)| represents
the “intensity” of the signal f(t) around the time t=b and

the angular frequency w= wy/a .

2.2 Wavelet Transform and Dispersion
To illustrate the use of the wavelet transform in the
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(b) Fourier transform of gabor function

Fig. 1 The Gabor wavelet and the Fourier Transform of
Gabor wavelet y=7v 2/In2 and w,=2r
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analysis of dispersion, let us consider two harmonic
wave of unit amplitude and different angular frequen-

cy w;and w, propagating in the x-direction, given by

—i(kix—wd ~i(kyx—wyf)

wulx,)=c¢e +e

=92 cos(Lke— Aaf)e FETOD Q)

where k; and %, are wave numbers.

ko=(k1t+k) , 0., =(w;+ wy)2 ®

and

ak=(ky— k2 , ro=(0,— 02 ®

If Aw is sufficiently small, the group ¢, at the

angular frequency w . can be defined as

c,= Lw/Lk

(10)

When the Gabor wavelet is adopted as the analyzing
wavelet, the magnitude of WT of u(x, £) is obtained
as (8)

| (W) (x, @, D =V {[ % Law )]’
+[A¢g(aw2)] 2}

+279 (aw )9 z(aw,)

cos(2ake—20wh) (11)

If Aw is sufficiently small such that
/g\p g(aw 1);/9\0 g(dwz);?’ g(a c)
we obatin

| (Wao)(x, a, b)| =
V24| 9(aw )| - [1+cos Qake—20wb)] Y2 (12)

This equation indicates that the magnitude of WT
takes its maximum value at @ =@y /®, and b= @Ak/
Aw)x=x/c, Therefore, for fixed x, a three dimen

sional plot of {(wu)(x,a,6)| on the (a,b)-plane has a
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peak at (@D)=0/®..x/c, 1 other words, the
location of the peak on the (a, b)-plane indicates the

b=xc

arrival time g of the wave having angular

frequency

w,=w,/a.

3. Experimental Setup

For the excitation of guided waves, a couple of 0.5
MHz commercial type contact longitudinal transducers
were used with variable angle shoes. Guided waves were
excited on sample steel plate with the thickness of
6.25mm. The center frequency of the excited signals
was 0.5 MHz and the angle of incident angle was 60
degrees. Pitch-catch and pulse-echo method(transducer
spacing:24 inches) were used for the analysis of the
characteristics of excited guided waves. The excitation
signals were made by a tone burst system(Ritec RAM
10000) that could control signal duration and frequency.
Therefore, the center of excitation bandwidth of phase
velocity was between AQ and SO at the fd value of 0.5
MHz.

Once the experimental data are saved on a workstation
with sampling rate 6.35 MHz, the signal processing
procedure follows. It is important to window the signals
before applying the Fourier transform. In this paper a
Hanning window gives best results. However, the
maximum of the Hanning window is at the half of the
input sequence length of the signal, whereas the
interesting part of the signal might not be at the same
place as the maximum of the Hanning window.
Therefore by using a common Hanning window, the
interesting part of the signal may be reduced in
amplitude whereas the less interesting part of the signal
may be unchanged. To avoid this problem, zeros are
added at the beginning or the end of the signal in order
to shift

corresponding maximum of the Hanning window. The

the interesting part of the signal to the

signals are then transformed into the frequency domain
using the fast Fourier transform(FFT). The discrete form
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Fig. 2 3-D plot of the wavelet transform of Lamb wave
signal

of Eq. (5) leads to the wavelet domain of the four

signals. The parameters used in this transform are

a=2"* and b=nAt (13)

where m and n are integers. Newland"? suggested the
use of the wavelet transform starting in the time domain,
transforming into the frequency domain, and finally
transforming into the wavelet domain. This is preferred
against direct transformation of the time-domain signal
into the wavelet domain as shown in Eq. (1). The
advantage is a savings in computational time by about
two orders of magnitude. Fig. 2 is an example of the
3-D plot of the magnitude of the wavelet transform of
guided wave signal. The maximum of the plot can be
easily seen, Fig. 3 shows the contour plot of the
time-frequency analysis using the wavelet transform of
guided wave signal. As mentioned before, each peak in
Fig. 3 represents the arrival time of a guided wave
traveling with the group velocity. According to such a
plot, the traveling time of corresponding wave mode
between two points can be obtained for each value
f=1/a. Since the distance between two measuring points
is known, the group velocity can be identified at each
frequency by Eq. (13).
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Fig. 3 Contour plot of the wavelet transform of Lamb
wave signal

4, Results and Discussion

Guided wave modes and their dispersive charac-
teristics can be obtained by solving wave equation with
proper boundary conditions The result of frequency
analysis using the wavelet transform of guided waves
excited by an angle transducer is shown in Fig. 4 The
guided wave signals in time domain indicate that the
waves are dispersive and may be superposed by
multi-modes. The wavelet transform analysis reveals the
patterns of dispersion that is closely related with the
group velocity dispersion curves obtained by theoretical
calculations. The mode identification was performed by
the comparison of the patterns of dispersion. It was
that two different
propagating and the mode group containing A0 and SO

revealed mode groups were
modes were dominant. And the group velocity at 0.5
MHz was of A0 mode = 3.21 mm/isec, SO mode = 2.53
mm/lisec. From the c¢comparison of the dispersive
patterns obtained from both the wavelet transform and
theoretical dispersion diagram, the compact packet mode
and the widespread mode were identified as AQ and SO
modes, respectively. And, the wavelet transform can
feasible to identifying not only modes but also the
frequency bandwidth of each mode. The shaded areas in
Fig. 4 (b) represent the guided wave modes identified in
These

dispersion curves. results agreed with the
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Fig. 4 Guided wave mode identification by wavelet transform

theoretical expectation for the given excitation con-
ditions.

5. Conclusions

The application of the wavelet transform to the
time-frequency analysis of guided waves propagating in
a dispersive medium has been presented. It was found
that the wavelet transform using the Gabor wavelet was
an effective tool for the experimental analysis of
dispersive waves in steel plate. The arrival times of each
frequency component needed in the group velocity
calculation could be determined from the peak of the
magnitude of wavelet transform data on the time-
frequency domain.

And, experimental guided wave mode identification is
carried out in a steel plate using time-frequency analysis
methods such as wavelet transform. The results are
compared with theoretically calculated group velocity
dispersion curves. The results are in good agreement
with analytical predictions and show the effectiveness_of
using the wavelet transform method to identify and
measure the amplitudes of individual guided wave
modes.

Acknowledgement

This work was supported by the research fund of

99

Seoul National University of Technology

References

(1) Park, I. K. and Ahn, H. K., 2001, “Time-Frequency
Analysis of Lamb wave mode”, Trans. of KSMTE,
Vol. 10, No. 1, pp. 133~140.

(2) Park, I K.,
Ultrasonic Background Noise Signal using Wavelet
Transform”, Trans. of KSMTE, Vol. 8, No. 1, pp.
135~ 141.

(3) Daubechies, 1., 1990, “The Wavelet Transform,
Time-Frequency Localization and Signal Analysis”,
IEEE Trans. on Information Theory, Vol. 36, pp. 112
~118.

(4) Alleyne, D. and Cawley, P., 1991, “A Two-
Dimensional Fourier Transform method for the

1999, “A Study on Suppression of

Neasurement of Propagating Multimode Signals”, J.
Acoust. Soc. Am, Vol. 89, No. 3, pp. 1159~1168.

(5) Hayashi, T. and Kawashima, K., 2002, “Extraction
of a Single Mode from Multiple Modes of Lamb
Wave and Its Application to Defect Detection” , Traws.
of JSME, Series A, Vol. 67, No. 664, pp. 83~ 89,

(6) Prosser, W. H. and Seale, Michael D. S., 1999, “Time
Frequency Domain Analysis of the Dispersion of
Lamb Modes”, J. acoust. Soc. Am., Vol. 105, No.
5, pp. 2699~2676.

(7) Inoue, H., Kishimoto, K. and Shibuya, T., 1996,



1z
0
ru

“Experimental Wavelet Analysis of Flexural Waves
in Beams”, Experimental Mechanics, Vol. 36, No.
3, pp. 212~217.

(8) Kishimoto, K., Inoue, K. and Hamada, M., 1995,
“Time Frequency Analysis of Dispersive Waves by
means of Wavelet transform”, J of Applied
Mechanics, Vol. 62, pp. 841~ 846.

(9) Veroy, K. L. and Woo, S. C., 1999, Analysis of
Dispersive Waves using the WaveletTtransform,

Review of Progressive in QNDE, Plenum Press, New

100

York, Vol. 18, pp. 687 ~694.

(10) Wu, T. T. and Chen, Y. Y., 1999, “Wavelet Analysis
Laser-generated Surface WavesinaLayered Structure
with Unbonded Regions”, J. of Applied Mech., Vol.
66, pp. 507~513.

(11) Strang, G. and Nguyen, T., 1996, Wavelets and Filter
banks, Chap. 7, Wellesley Cambrige Press, Wellesley,
MA

(12) Newland, D. E., 1997, “Proc. DETC ‘97", DETC
97/VIB-4135, Vol. 1, No. 12, pp. 1 ~12.



