• Title/Summary/Keyword: Distribution Order

Search Result 9,841, Processing Time 0.037 seconds

Analysis of Safety Stock and Service Level For an Distribution Center with Variable Demand Variable Lead Time Model (수요 및 조달기간의 변동을 고려한 물류 센터의 안전재고와 서비스수준 분석)

  • 박명규;조용욱
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.3
    • /
    • pp.65-75
    • /
    • 2001
  • This research fundamentally deals with an analysis of service level for a multi-level inventory distribution system which is consisted of a central distribution center and several branches being supplied stocks from the distribution center, Under continuous review policy, the distribution center places an order for planned order quantity to an outside supplier, and the order quantity is received after a certain lead time. Also, each branch places an order for particular quantity to its distribution center, and receives the order quantity after a lead time. In most practical distribution environment, demands and lead times are generally not fixed or constant, but variable. And these variabilities make the analysis more complicated. Thus, the main objective of this research is to suggest a method to compute the service level at each depot, that is, the distribution center and each branch with variable demands and variable lead times. Further, the model will give an idea to keep the proper level of safety stocks that can attain effective or expected service level for each depot.

  • PDF

A study on the Method to Determine Optimal Service Level of a Distribution Center in Supply Chain Management Environment (SCM환경에서의 물류센터의 최적 서비스 수준 결정 방법)

  • 조용욱;박명규
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.3
    • /
    • pp.55-64
    • /
    • 2001
  • The main objective of this research is to develop a model to select the optimal input service level for a distribution center-multi branch inventory distribution system. With the continuous review policy, the distribution center places an order for specific order quantity to an outside supplier, and the order quantity is replenished after a certain lead time Also, each branch places an order for particular order quantity to the distribution center to satisfy the customer demands, and receives the replenishment after a lead time. When an out of stock condition occurs during an order cycle, a backorder is placed to the upper level to fill the unfilled demands. With these situation, variable demand and variable lead time are used for better industrial practice. Further, actual lead times with a generic lead time distribution are used in developing the control model. Under the actual lead time model, the customer service measures actually attained for the distribution center and each branch are explained as the effective customer service measures. Thus, throughout the optimal control (using computer search procedures), we can select the optimal input service levels for the distribution center and each branch to attain the effective service levels for each branch which is consistent with the goal level of service for each branch. At the same time, the entire distribution system keeps minimum inventories.

  • PDF

Analysis of Multi-Level Inventory Distribution System for an Item with Low Level of Demand

  • Lee, Jin-Seok;Yoon, Seung-Chul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.60
    • /
    • pp.11-22
    • /
    • 2000
  • The main objective of this research is to analyze an order point and an order quantity of a distribution center and each branch to attain a target service level in multi-level inventory distribution system. In case of product item, we use the item with low volume of average monthly demand. Under the continuous review method, the distribution center places a particular order quantity to an outside supplier whenever the level of inventory reaches an order point, and receives the order quantity after elapsing a certain lead time. Also, each branch places an order quantity to the distribution center whenever the level of inventory reaches an order point, and receives the quantity after elapsing a particular lead time. When an out of stock condition occurs, we assume that the item is backordered. For considering more realistic situations, we use generic type of probability distribution of lead times. In the variable lead time model, the actually achieved service level is estimated as the expected service level. Therefore, this study focuses on the analysis of deciding the optimal order point and order quantity to achieve a target service level at each depot as a expected service level, while the system-wide inventory level is minimized. In addition, we analyze the order level as a maximum level of inventory to suggest more efficient way to develop the low demand item model.

  • PDF

컴퓨터 탐색을 이용한 재고관리 시스템의 최적화

  • 윤승철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.477-480
    • /
    • 1996
  • The main objective of this research is to develop the optimal control method for a Distribution Center - multi Branch inventory distribution system. With the continuous review policy, the distribution center places an order for specific order quantity to an outside supplier, and the order quantity is replenished after a certain lead time. Also, each branch places an order for particular order quantity to the distribution center to satisfy the customer demands, and receives the replenishment after a lead time. When an out of stock condition occurs during an order cycle, a backorder is placed to the upper level to fill the unfilled demands. With these situation, variable demand and variable lead time are used for better industrial practice. Futher, actual lead times with a generic lead time distribution are used in developing the control model. Under the actual lead time model, the customer service measures actually attained for the distribution center and each branch are explained as the effective customer service measures. Thus, throughout the optimal control (using computer search procedures), we can set the desired service levels for the distribution center and each branch to produce the effective service level for each branch which is consistent with the goal level of service for each branch. At the same time, the entire distribution system keeps minimum inventories.

  • PDF

An Approximate Order Risk Evaluation Method for the General Multi- Echelon Distribution Supply Chain (다계층 분배형 공급사슬에서 주문리스크의 근사적 계산방법과 비용개선효과)

  • Seo, Yong-Won
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.636-647
    • /
    • 2004
  • The objective of this paper is to provide an improved reorder decision policy for general multi-echelon distribution systems utilizing the shared stock information. It has been known that traditional reorder policies sometimes show poor performance in distribution systems. Thus, in our previous research we introduced the order risk policy which utilizes the shared stock information more accurately for the 2-echelon distribution system and proved the optimality. However, since the real world supply chain is generally composed with more than 2 echelons, we extend the order risk policy for the general multi-echelon systems. Since the calculation of the exact order risk value for general multi-echelon systems is very complex, we provide two approximation methods for the real-time calculation. Through the computational experiment comparing the order risk policy with the existing policies under various conditions, we show the performance of the order risk policy and analyze the value of the shared stock information varying with the characteristics of the supply chain.

  • PDF

An Improved Reorder Policy for the General Multi-Echelon Distribution Supply Chain based on the Order Risk (다계층 분배형 공급사슬의 운영 개선을 위한 주문리스크 기반의 재주문정책과 실용적 근사방법)

  • 서용원
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.159-165
    • /
    • 2003
  • The objective of this paper is to provide an improved reorder decision policy for general multi-echelon distribution systems utilizing the shared stock information. Since it has been known that traditional reorder policies sometimes show poor performance in distribution systems, in our previous research we introduced the order risk policy which utilizes the shared stock information more accurately f3r the 2-echelon distribution system and proved the optimality. However, since the real world supply chain is generally composed with more than 2 echelons, we extend the order risk policy for the general multi-echelon systems. Since the calculation of the exact order risk value fur general multi-echelon systems is very complex, we provide two approximation methods. Through the computational experiment comparing the order risk policy with the existing policies under various conditions, we show the performance of the order risk policy and analyze the value of the shared stock information varying with the characteristics of the supply chain.

  • PDF

An Improved Reorder Policy for the General Multi-Echelon Distribution Supply Chain Based on the Order Risk (일반적 다계층 분배형 공급사슬에서 주문리스크 기반의 개선된 재주문정책에 관한 연구)

  • Seo, Yong-Won
    • IE interfaces
    • /
    • v.17 no.3
    • /
    • pp.359-374
    • /
    • 2004
  • The objective of this paper is to provide an improved reorder decision policy for general multi-echelon distribution systems utilizing the shared stock information. It has been known that traditional reorder policies sometimes show poor performance in distribution systems. Thus, in our previous research we introduced the order risk policy which utilizes the shared stock information more accurately for the 2- echelon distribution system and proved the optimality. However, since the real world supply chain is generally composed with more than 2 echelons, we extend the order risk policy for the general multi-echelon systems. Since the calculation of the exact order risk value for general multi-echelon systems is very complex, we provide two approximation methods for the real-time calculation. Through the computational experiment comparing the order risk policy with the existing policies under various conditions, we show the performance of the order risk policy and analyze the value of the shared stock information varying with the characteristics of the supply chain.

SECOND ORDER REGULAR VARIATION AND ITS APPLICATIONS TO RATES OF CONVERGENCE IN EXTREME-VALUE DISTRIBUTION

  • Lin, Fuming;Peng, Zuoxiang;Nadarajah, Saralees
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.75-93
    • /
    • 2008
  • The rate of convergence of the distribution of order statistics to the corresponding extreme-value distribution may be characterized by the uniform and total variation metrics. de Haan and Resnick [4] derived the convergence rate when the second order generalized regularly varying function has second order derivatives. In this paper, based on the properties of the generalized regular variation and the second order generalized variation and characterized by uniform and total variation metrics, the convergence rates of the distribution of the largest order statistic are obtained under weaker conditions.

A Study on the Improvement of Order-Picking Operation in S-Automobile Parts Distribution Center (S-자동차 부품 물류센터에서 오더픽킹 작업능력 향상을 위한 연구)

  • Park, Jung-Hyun;Park, Yang-Byung
    • IE interfaces
    • /
    • v.17 no.4
    • /
    • pp.450-458
    • /
    • 2004
  • S-Distribution Center supplies parts to three plants of K-automobile manufacturing company. Since the three plants employ the JIT production system, it is important for S-Distribution Center to deliver small quantities of parts frequently and quickly on time. This paper presents a case study on the improvement of order-picking operation in S-Distribution Center. The study is focused on the reductions of move time and waiting time by redesigning the parts storage location, picking-order terminal location, retrieval policy, and equipment operation policy. The proposed operation system for S-Distribution Center is evaluated through a simple computation analysis and computer simulation. Furthermore, the reducible numbers of equipment and order pickers are investigated by performing a sensitivity analysis.

On Weak Convergence of Some Rescaled Transition Probabilities of a Higher Order Stationary Markov Chain

  • Yun, Seok-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.3
    • /
    • pp.313-336
    • /
    • 1996
  • In this paper we consider weak convergence of some rescaled transi-tion probabilities of a real-valued, k-th order (k $\geq$ 1) stationary Markov chain. Under the assumption that the joint distribution of K + 1 consecutive variables belongs to the domain of attraction of a multivariate extreme value distribution, the paper gives a sufficient condition for the weak convergence and characterizes the limiting distribution via the multivariate extreme value distribution.

  • PDF