• 제목/요약/키워드: Distribution Inventory System

검색결과 227건 처리시간 0.024초

외식 프랜차이즈 가맹본부의 사후 지원서비스가 가맹점의 관계품질과 경영성과에 미치는 영향 (The Effect of Franchisor's On-going Support Services on Franchisee's Relationship Quality and Business Performance in the Foodservice Industry)

  • 이재한;이용기;한규철
    • 한국유통학회지:유통연구
    • /
    • 제15권3호
    • /
    • pp.1-34
    • /
    • 2010
  • 본 연구의 목적은 국내 외식 프랜차이즈 시스템에서 가맹점에 대한 가맹본부의 관계품질에 영향을 미치는 변수를 사후 지원서비스로 설정하고, 사후 지원서비스가 가맹점의 관계품질(신뢰, 만족, 몰입)과 경영성과(재무적 성과, 비재무적 성과)에 미치는 영향에 대한 포괄적인 모형을 개발하는 것이다. 제안된 모형을 검증하기 위하여 서울 및 경기 지역의 외식 프랜차이즈 가맹점 경영자 500명을 대상으로 설문 조사를 하여, 구조방정식을 통해 실증 분석하였다. 분석결과는 다음과 같다. 첫째, 사후 지원서비스 요인 중 제품범주 및 가격 요인과 정보제공 및 문제해결 능력 요인은 가맹점의 만족과 몰입에만 영향을 미치는 것으로 나타났다. 둘째, 물류지원과 슈퍼바이저 지원 요인은 신뢰와 만족에만 영향을 미치는 것으로 나타났다. 셋째, 재교육 및 훈련지원 요인은 가맹점의 신뢰와 몰입에만 영향을 미치는 것으로 나타났다. 넷째, 판매촉진 요인은 신뢰 만족, 그리고 몰입 모두에 영향을 미치는 것으로 나타났다. 다섯째, 관계품질요인들 간의 관계는 신뢰가 만족에 긍정적인 영향을 미치지만 몰입에는 직접적으로 영향을 미치지 못하고, 만족을 통해서 몰입에 긍정적인 영향을 미치는 것으로 나타났다. 여섯째, 신뢰는 재무적 성과에만 긍정적인 영향을 미치고, 만족과 몰입은 재무적 성과와 비재무적 성과 모두에 긍정적 영향을 미치는 것으로 나타났다. 마지막으로 본 연구의 결과요약과 시사점, 그리고 연구의 한계점과 향후 연구방향이 제시되었다.

  • PDF

조경 BIM 라이브러리 표준화를 위한 조경객체 및 속성정보 분류체계 (Landscape Object Classification and Attribute Information System for Standardizing Landscape BIM Library)

  • 김복영
    • 한국조경학회지
    • /
    • 제51권2호
    • /
    • pp.103-119
    • /
    • 2023
  • BIM(건설정보모델링)을 건설사업 전반에 적용하려는 정부정책 이후 업계는 이를 적극적으로 도입, 활용하려는 동향을 보이고 있다. BIM 도입은 모델 객체들을 표준에 맞춰 라이브러리로 구축하여 반복 사용함으로써 업무량을 줄이고 데이터의 정합성과 호환성, 일관된 품질을 확보함으로써 촉진될 수 있다. 이에 국내 건축과 토목분야, 해외 조경분야에서는 이미 상당수의 BIM 라이브러리 표준화 연구를 수행하고 이를 토대로 지침을 마련하였다. 현재 국내 조경분야에서도 BIM에 관한 기초연구 및 도입을 시도하고 있으나 산업현장 적용에 어려움이 많아 확산이 지연되고 있다. 이는 표준화된 라이브러리 사용으로 BIM 설계업무의 효율성을 향상시킴으로써 개선될 수 있으므로 본 연구는 이에 대한 논의의 시발점을 마련함과 동시에 조경실무에서 라이브러리를 제작할 때 참고할 수 있는 객체의 기준을 제시하고자 하였다. 조경 BIM 라이브러리 표준화는 객체분류와 속성정보 도출이라는 두 가지 측면에서 모색되었다. 먼저 국내 건설정보분류체계, 물품분류체계, 조경설계기준, 조경공사표준시방서, 그리고 노르웨이 조경가협회의 BIM 객체분류체계를 참고로 객체분류를 시도하였다. 그 결과 조경객체는 조경식재, 조경시설물, 조경구조물, 조경포장재, 관수 및 배수시설의 5개 대분류하에 교목, 관목, 지피초화류, 옥외시설물, 옥외조명시설, 계단 및 경사로, 옥외벽체, 옥외구조물, 포장재, 경계석, 관수시설, 그리고 급배수시설을 포함하는 12개의 중분류로 나뉘었다. 다음으로 조경객체에 탑재될 속성정보를 도출하고 구조화하였다. 이를 위해 KBIMS(한국 BIM 표준)의 공통 속성정보를 항목에 포함하였고 객체의 종류에 따라 달라지는 객체 속성정보를 영국 조경협회의 PDT(제품정보 템플릿)를 참고하여 추가하였다. 이로써 공통 속성정보에 식별, 보급, 분류체계, 공급정보가 포함되었고, 객체 속성정보에 명명, 규격, 설치 또는 시공, 성능, 지속가능성, 유지관리에 관련된 정보들이 포함되었다. 본 연구는 조경객체의 라이브러리 표준화 방안을 제시함으로써 모델링의 업무 효율성 및 분야 간 BIM 모델의 데이터 정합성을 향상시킴으로써 조경 BIM 도입의 토대를 마련했다는 데에 의의가 있다.

협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템 (SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering)

  • 조용민;남기환
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.77-110
    • /
    • 2017
  • 최근 인터넷 기반의 웹 및 모바일 기기를 통한 소비 패턴의 다양화와 개성화가 급진전됨에 따라 전통적 유통채널인 오프라인 매장의 효율적 운영이 더욱 중요해졌다. 매장의 매출과 수익 모두를 제고하기 위해 매장은 소비자에게 가장 매력적인 상품을 적시에 공급-판매 해야 하는데 많은 상품들 중에서 어떤 SKU를 취급하는 것이 판매 확률을 높이고 재고 비용을 낮출 수 있는지에 대한 연구가 부족한 실정이다. 특히, 여러 지역에 걸쳐 다수의 오프라인 매장을 통해 상품을 판매하는 기업의 경우 고객에게 매력적인 적절한 SKU를 추천 받아 취급할 수 있다면 매장의 매출 및 수익률 제고에 도움이 될 것이다. 본 연구에서는 개인화 추천에 이용되어 왔던 협업 필터링과 하이브리드 필터링 등의 추천 시스템(Recommender System)을 국가별, 지역별로 복수의 판매 매장을 통해 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하였다. 각 매장의 취급 품목별 구매 데이터를 활용하여 각 매장 별 유사성(Similarity)을 계산하고 각 매장의 SKU별 판매 이력에 따라 협업 필터링을 하여 최종적으로 매장에 개별 SKU를 추천하였다. 또한 매장 프로파일 데이터를 활용하여 주변수 분석 (PCA : Principal Component Analysis) 및 군집 분석(Clustering)을 통하여 매장을 4개의 군집으로 분류한 뒤 각 군집 내에서 협업 필터링을 적용한 하이브리드 필터링 방식으로 추천 시스템을 구현하고 실제 판매 데이터를 바탕으로 두 방식의 성능을 측정하였다. 현존하는 대부분의 추천 시스템은 사용자에게 영화, 음악 등의 아이템을 추천하는 방식으로 연구가 진행되어 왔고 실제로 산업계에서의 적용 또한 개인화 추천 시스템이 주류를 이루고 있다. 그 동안 개인화 서비스 영역에서 주로 다루어져 왔던 이러한 추천 시스템을 동종 브랜드를 취급하는 유통 기업의 매장 단위에 적용하여 각 매장의 취급 SKU를 추천하는 방식에 대한 연구는 거의 이루어지지 않고 있는 실정이다. 기존 추천 방법론의 추천 적용 대상이 '개인의 영역이었다면 본 연구에서는 국가별, 지역별로 복수의 판매 매장을 통해 개인의 영역을 넘어 매장의 영역으로 확대하여 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하고 있다. 또한 기존의 추천시스템은 온라인에 한정되었다면 이를 오프라인으로 활용 범위를 넓히고, 기존 개인을 기반으로 분석을 하는 것보다 매장영역으로 확대 적용하기에 적합한 알고리즘을 개발하기 위해 데이터마이닝 기법을 적용하여 추천 방법을 제안한다. 본 연구의 결과가 갖는 의의는 개인화 추천 알고리즘을 동일 브랜드를 취급하는 복수의 판매 매장에 적용하여 의미 있는 결과를 도출하고 실제 기업을 대상으로 시스템으로 구축하여 활용할 수 있는 구체적 방법론을 제시했다는 데에 있다. 개인화 영역을 위주로 이루어졌던 기존의 추천 시스템과 관련한 학계의 연구 영역을 동종 브랜드를 취급하는 기업의 판매 매장으로 확장시킨 첫 시도라는 데에도 의미가 있다. 2014년 03주차 ~ 05주차 전(全) 매장 판매 수량 실적 Top 100개 SKU로 추천의 대상을 한정하여 협업 필터링과 하이브리드 필터링 방식으로 52개 매장 별로 취급 SKU를 추천하고, 추천 받은 SKU에 대한 2014년 06주차 매장별 판매 실적을 집계하여 두 추천 방식의 성과를 비교하였다. 두 추천 방식을 비교한 이유는 본 연구의 추천 방법이 기존 추천 방식 보다 높은 성과를 입증하기 위해 단순히 오프라인에 협업필터링을 적용한 것을 기준 모델로 정의하였다. 이 기준 모델에 오프라인 매장 관점의 특성을 잘 반영한 본 연구 모델인 하이브리드 필터링 방법과 비교 함으로써 성과를 입증한다. 연구에서 제안한 방식은 기존 추천 방식보다 높은 성과를 나타냈으며, 이는 국내 대기업 의류업체의 실제 판매데이터를 활용하여 입증하였다. 본 연구는 개인 수준의 추천시스템을 그룹수준으로 확장하여 효율적으로 접근하는 방법을 이론적인 프레임 워크를 만들었을 뿐 아니라 실제 데이터를 기반으로 분석하여 봄으로써 실제 기업들이 적용해 볼 수 있다는 점에서 연구의 가치가 크다.

도서유통(圖書流通) 효율화(效率化)를 위한 공정거래정책(公正去來政策) (Returns and Resale Price Maintenance in Book Distribution)

  • 신광식
    • KDI Journal of Economic Policy
    • /
    • 제13권2호
    • /
    • pp.141-161
    • /
    • 1991
  • 재판매가격유지(再版賣價格維持)는 어떤 다른 제품보다도 도서유통(圖書流通)에서 가장 오랫동안 쓰여 왔으며, 원칙적으로 재판매가격유지를 금지하고 있는 우리의 "독점규제(獨占規制) 및 공정거래(公正去來)에 관(關)한 법률(法律)"에서도 출판물(出版物) 등 저작물(著作物)에 대해서만은 이를 예외적으로 허용하고 있다. 본고(本稿)는 도서유통에서의 재판매가격유지(再版賣價格維持)와 반품제(返品制)의 경제적(經濟的) 기능(機能)과 효과(效果)를 분석하고 있다. 재판매가격유지는 서점(書店)이 수집 전달하는 시장정보(市場情報)에 대한 재산권(財産權)을 확립하여 판매전망이 불확실한 도서가 취급 전시되도록 하는 것으로 반품제(返品制)가 이와 동일한 경제적 기능을 제공하는 대체적(大替的) 수단(手段)이 된다. 미국에서 재판매가격유지(再版賣價格維持)가 위법화(違法化)되자 반품제(返品制)가 도입되었고 판매마진이 감소하면서 반품율(返品率)이 증가한 것이나, 재판매가격유지를 허용해 온 영국 등 유럽제국에서 반품제 없이 도서유통(圖書流通)이 이루어지고 있는 것이 이를 뒷받침해 준다. 도서(圖書)의 재판매가격유지(再版賣價格維持) 허용으로 출판사들은 반품(返品)에 따른 비용(費用)을 감소시킬 수 있고 서점들이 대형화(大型化) 유인(誘引)을 갖게 될 것이다. 그러나 재판매가격유지계약(再版賣價格維持契約)을 체결한 출판사가 많지 않다는 것은 이미 반품제(返品制)가 광범위하게 쓰이고 있는 현실을 반영하는 것으로 재판매가격유지는 출판사가 원하는 도서에 대해서만 허용되어야 하며 할인판매여부(割引販賣與否)와 시기(時期)도 출판사가 제한없이 결정할 수 있도록 하여야 할 것이다.

  • PDF

충돌 정보와 m-bit인식을 이용한 적응형 RFID 충돌 방지 기법 (Adaptive RFID anti-collision scheme using collision information and m-bit identification)

  • 이제율;신종민;양동민
    • 인터넷정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.1-10
    • /
    • 2013
  • RFID(Radio Frequency Identification)시스템은 하나의 RFDI리더, 다수의 RFID태그 장치들로 이루어진 비접촉방식의 근거리 무선 인식 기술이다. RFID태그는 자체적인 연산 수행이 가능한 능동형 태그와 이에 비해 성능은 떨어지지만 저렴한 가격으로 물류 유통에 적합한 수동형 태그로 나눌 수 있다. 데이터 처리 장치는 리더와 연결되어 리더가 전송받은 정보를 처리한다. RFID 시스템은 무선주파수를 이용해 다수의 태그를 빠른 시간에 인식할 수 있다. RFID시스템은 유통, 물류, 운송, 물품관리, 출입 통제, 금융 등 다양한 분야에서 응용되고 있다. 하지만 RFID시스템을 더욱 확산시키기 위해서는 가격, 크기, 전력소모, 보안 등 해결할 문제가 많다. 그 문제들 중에서 본 논문에서는 다수의 수동형 태그를 인식할 때 발생하는 충돌 문제를 해결하기 위한 알고리즘을 제안한다. RFID 시스템에서 다수의 태그를 인식하기 위한 충돌 방지 기법에는 확률적인 방식과 결정적인 방식 그리고 이를 혼합한 하이브리드 방식이 있다. 본 논문에서는 우선 기존에 있던 확률적 방식의 충돌방지기법인 알로하 기반 프로토콜과 결정적 방식의 충돌방지기법인 트리 기반 프로토콜에 대해 소개한다. 알로하 기반 프로토콜은 시간을 슬롯 단위로 나누고 태그들이 각자 임의로 슬롯을 선택하여 자신의 ID를 전송하는 방식이다. 하지만 알로하 기반 프로토콜은 태그가 슬롯을 선택하는 것이 확률적이기 때문에 모든 태그를 인식하는 것을 보장하지 못한다. 반면, 트리 기반의 프로토콜은 리더의 전송 범위 내에 있는 모든 태그를 인식하는 것을 보장한다. 트리 기반의 프로토콜은 리더가 태그에게 질의 하면 태그가 리더에게 응답하는 방식으로 태그를 인식한다. 리더가 질의 할 때, 두 개 이상의 태그가 응답 한다면 충돌이라고 한다. 충돌이 발생하면 리더는 새로운 질의를 만들어 태그에게 전송한다. 즉, 충돌이 자주 발생하면 새로운 질의를 자주 생성해야하기 때문에 속도가 저하된다. 그렇기 때문에 다수의 태그를 빠르게 인식하기 위해서는 충돌을 줄일 수 있는 효율적인 알고리즘이 필요하다. 모든 RFID태그는 96비트의 EPC(Electronic Product Code)의 태그ID를 가진다. 이렇게 제작된 다수의 태그들은 회사 또는 제조업체에 따라 동일한 프리픽스를 가진 유사한 태그ID를 가지게 된다. 이 경우 쿼리 트리 프로토콜을 이용하여 다수의 태그를 인식 하는 경우 충돌이 자주 일어나게 된다. 그 결과 질의-응답 수는 증가하고 유휴 노드가 발생하여 식별 효율 및 속도에 큰 영향을 미치게 된다. 이 문제를 해결하기 위해 충돌 트리 프로토콜과 M-ary 쿼리 트리 프로토콜이 제안되었다. 하지만 충돌 트리 프로토콜은 쿼리 트리 프로토콜과 마찬가지로 한번에 1비트씩 밖에 인식을 못한다는 단점이 있다. 그리고 유사한 태그ID들이 다수 존재할 경우, M-ary 쿼리 트리 프로토콜을 이용해 인식 하면, 불필요한 질의-응답이 증가한다. 본 논문에서는 이러한 문제를 해결하고자 M-ary 쿼리 트리 프로토콜의 매핑 함수를 이용한 m-비트 인식, 맨체스터 코딩을 이용한 태그 ID의 충돌정보, M-ary 쿼리 트리의 깊이를 하나 감소시킬 수 있는 예측 기법을 이용하여 성능을 향상시킨 적응형 M-ary 쿼리트리 프로토콜을 제안한다. 본 논문에서는 기존의 트리기반의 프로토콜과 제안하는 기법을 동일한 조건으로 실험하여 비교 분석 하였다. 그 결과 제안하는 기법은 식별시간, 식별효율 등에서 다른 기법들보다 성능이 우수하다.

지식 공유의 파레토 비율 및 불평등 정도와 가상 지식 협업: 위키피디아 행위 데이터 분석 (Pareto Ratio and Inequality Level of Knowledge Sharing in Virtual Knowledge Collaboration: Analysis of Behaviors on Wikipedia)

  • 박현정;신경식
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.19-43
    • /
    • 2014
  • 전체 결과의 80%가 전체 원인의 20%에 의해 일어난다는 파레토 법칙(Pareto principle)은 상위 20%의 핵심 고객에 대한 우선적인 마케팅을 비롯하여 기업 경영의 많은 부분에서 적용되어 왔다. 파레토 법칙과는 대조적으로, 80%의 사소한 다수가 20%의 핵심적인 소수보다 우월한 가치를 창출한다는 롱테일 법칙(Long Tail theory)은 ICT(Information and Communication Technology)의 발전과 함께 새로운 경영 패러다임으로 주목 받아오고 있다. 본 연구의 목적은 경영 현장에서 양대 흐름을 형성해온 이러한 법칙들이 변화무쌍한 글로벌 가상화 환경에서 기업의 핵심적인 성공 요인이라고 할 수 있는 가상 지식 협업에는 어떻게 관련되는지를 규명하는 것이다. 이를 위해, 대표적인 가상 지식 협업 커뮤니티인 위키피디아에서 품질 최상위 등급인 피쳐드 아티클(Featured Article) 레벨로 승급된 2,978개의 아티클에 대한 협업 행위를 분석하였다. 즉, 각 아티클 그룹에서 편집 횟수 기준 상위 20%에 속하는 참여자들의 총 편집 횟수가 전체 편집 횟수에서 차지하는 비율인 파레토 비율(Pareto ratio)이 지식 협업 효율성과 어떤 관계를 가지고 있는지를 도출하였다. 그리고, 이러한 연구를 편집 참여를 통한 지식 공유에 대한 전체적인 불평등 정도를 나타내는 지니 계수(Gini coefficient)의 영향 및 그룹의 작업 특성을 반영하도록 확장하였다. 결과적으로, 지식 공유의 파레토 비율과 지니 계수가 증가하면 지식 협업 효율성도 높아지지만, 이러한 변수들이 일정 수준 이상으로 증가하면 오히려 지식 협업 효율성이 낮아지는 역 U자(inverted U-shaped) 관계가 있음을 확인하였다. 그리고, 이러한 관계는 인지적 노력을 상대적으로 더 많이 요구하는 학문적인 특성의 작업에서 더 민감하게 작용하는 것으로 보인다.

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF