• 제목/요약/키워드: Distributed power generation system

검색결과 440건 처리시간 0.023초

분산전원이 연계된 배전계통의 사고지점 확인 및 보호협조 방안 제시 (Fault location identification and protective coordination schemes presentation of distribution system interconnected Distributed Generation)

  • 최동만;최준호;노경수;문승일;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.313-315
    • /
    • 2005
  • Recently There has been growing interest in new renewable energy systems with high-energy efficiency due to the increasing energy consumption and environmental pollution problems. But an insertion of new distributed generation to existng power distribution systems can cause several problems such as voltage variations, harmonics, protective coordination, increasing fault current etc, because of reverse power. This paper was applied to fault location defecting a method as each Relay sensing fault current value and carried out short-circuit analysis by MATLAB and PSCAD/EMTDC programs and identity the faulted section o f22.9[kV] distribution system interconnected a large number of distributed generation. The existing protection system of 22.9[kV] power distribution system analyzed and the study on protective coordination recloser and Sectionalzer accomplished

  • PDF

Design Considerations for a Distributed Generation System Using a Voltage-Controlled Voltage Source Inverter

  • Ko, Sung-Hun;Lee, Su-Won;Lee, Seong-Ryong;Naya, Chemmangot V.;won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.643-653
    • /
    • 2009
  • Voltage-controlled voltage source inverter (VCVSI) based distributed generation systems (DGS) using renewable energy sources (RES) is becoming increasingly popular as grid support systems in both remote isolated grids as well as end of rural distribution lines. In VCVSI based DGS for load voltage stabilization, the power angle between the VCVSI output voltage and the grid is an important design parameter because it affects not only the power flow and the power factor of the grid but also the capacity of the grid, the sizing of the decoupling inductor and the VCVSI. In this paper, the steady state modeling and analysis in terms of power flow and power demand of the each component in the system at the different values of maximum power angle is presented. System design considerations are examined for various load and grid conditions. Experimental results conducted on a I KVA VCVSI based DGS prove the analysis and simulation results.

마이크로터빈발전시스템 계통연계운전을 위한 동적 모델링 및 시뮬레이션 (Dynamic model and simulation of microturbine generation system for grid-connected operation)

  • 홍원표;조재훈
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.105-110
    • /
    • 2009
  • Distributed Generation (DG) is predicted to play a important role in electric power system in the near future. insertion of DG system into existing distribution network has great impact on real-time system operation and planning. It is widely accepted that micro turbine generation (MTG) systems are currently attracting lot of attention to meet customers need in the distributed power generation market In order to investigate the performance of MT generation systems, their efficient modeling is required. This paper presents the modeling and simulation of a MT generation system suitable for grid-connected operation. The system comprises of a permanent magnet synchronous generator driven by a MT. A brief description of the overall system is given, and mathematical models for the MT and permanent magnet synchronous generator are presented. Also, the use of Power electronics in conditioning the power output of the generating system is demonstrated. Simulation studies with MATLAB/Simulink have been carried out in grid-connected operation mode of a DG system. The control strategies for grid connected operation mode of DG system is also presented.

  • PDF

DC Micro-Grid Operational Analysis with a Detailed Simulation Model for Distributed Generation

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon;Jeong, Yu-Seok;Yang, Hyo-Sik;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.350-359
    • /
    • 2011
  • This paper describes the operational analysis results of a DC micro-grid using a detailed model of distributed generation. A detailed model of wind power generation, photo-voltaic generation and fuel cell generation was implemented with an userdefined model created with PSCAD/EMTDC software and coded in C-language. The operational analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by a built-in model and the controller is modeled by an user-defined model that is also coded in C-language. Various simulation results confirm that a DC micro-grid can operate without any problems in both the grid-tied mode and in the islanded mode. The operational analysis results confirm that the DC micro-grid makes it feasible to provide power to the load stably. It can also be utilized to develop an actual system design.

배전계통에서 분산전원 운전가능 범위에 대한 연구 (A Study on Permissible Operation Limit of Distributed Generation System in Distribution System)

  • 정원재;김태응;김재언
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.19-21
    • /
    • 2001
  • Nowadays, small scale DGS(Distributed Generation System), as a wind power generation or photovoltaic generation, becomes to be introduced into the power distribution system. But in that case it is difficult to properly maintain the terminal voltage of low voltage customers by using only LDC(Line Drop Compensator). So, it is necessary to determine the permissible operation limit of the introduced DGS for proper voltage in distribution system. In this paper clarifies the relationship between LDC voltage regulation principle and real, reactive power of DGS, and examines the permissible operation limit of the introduced DGS in distribution system which the voltage is controlled by LDC.

  • PDF

분산전원이 포함된 복합배전계통 상태추정 (State Estimation on the Composite Distribution System with Distributed Generation)

  • 임재섭;이광기;권형석;김홍래
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.206-208
    • /
    • 2002
  • Distributed generation (DG) is predicted to play an increasing role in the electric power system of the near future. Distributed generation is by definition that is of limited size (roughly 10MW or less) and interconnected at the substation, distribution feeder or customer load levels. The effects of generation sources within a distribution network on the system losses are investigated in this paper. WLAV state estimation is performed with the composite distribution system containing DG. Simulations with test cases are performed and the results are presented, using IEEE34 bus radial distribution system.

  • PDF

Optimal Allocation Method of Hybrid Active Power Filters in Active Distribution Networks Based on Differential Evolution Algorithm

  • Chen, Yougen;Chen, Weiwei;Yang, Renli;Li, Zhiyong
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1289-1302
    • /
    • 2019
  • In this paper, an optimal allocation method of a hybrid active power filter in an active distribution network is designed based on the differential evolution algorithm to resolve the harmonic generation problem when a distributed generation system is connected to the grid. A distributed generation system model in the calculation of power flow is established. An improved back/forward sweep algorithm and a decoupling algorithm are proposed for fundamental power flow and harmonic power flow. On this basis, a multi-objective optimization allocation model of the location and capacity of a hybrid filter in an active distribution network is built, and an optimal allocation scheme of the hybrid active power filter based on the differential evolution algorithm is proposed. To verify the effect of the harmonic suppression of the designed scheme, simulation analysis in an IEEE-33 nodes model and an experimental analysis on a test platform of a microgrid are adopted.

연계형 태양광발전설비의 새로운 오동작 방지 및 재병입 알고리즘 제안 (Algorithm for Preventing Malfunction and Reclosing in Grid-Connected PV Systems)

  • 황민수;전태현
    • 조명전기설비학회논문지
    • /
    • 제26권7호
    • /
    • pp.70-76
    • /
    • 2012
  • In general, the unidirectional power flow is normal in distribution feeders before activation of distributed power source such as PV. However, the interactive power flow is likely to occur in case of the power system under distributed generation. This interactive power flow can cause an unexpected effect on convectional protection coordination systems designed based only on the unidirectional power flow system. When the power line system encounters a problem, the interactive power flow can be a contributed current source and this makes the fault current bigger or smaller compared to the unidirectional case. The effect of interactive power flow is varied depending on the location of the point to ground fault, relative location of the PV, and connection method. Therefore it is important to analyse characteristics of fault current and interactive flow for various transformer connection and location of the PV. This paper proposes a method of improved protection coordination which can be adopted in the protective device for customers in distribution feeders interconnected with the PV. The proposed method is simulated and analysed using PSCAD/EMTDC under various conditions.

순간전압강하를 고려한 분산전원 최적위치 선정 (Optimal Placement of Distributed Generation Units Considering Voltage Sags)

  • 송영원;이계병;박창현
    • 전기학회논문지
    • /
    • 제62권11호
    • /
    • pp.1505-1510
    • /
    • 2013
  • This paper presents a method for determining the optimal placement of distributed generation units considering voltage sags. In general, the existing methods for distributed generation placement do not consider power quality problems such as voltage sags. In this paper, a novel method based on both genetic algorithm and voltage sag assessment is proposed for determining the placement of distributed generation unit. In the proposed method, the optimal placement is determined to minimize voltage sag effects and system losses.

A Novel Dual-Input Boost-Buck Converter with Coupled Inductors for Distributed Thermoelectric Generation Systems

  • Zhang, Junjun;Wu, Hongfei;Sun, Kai;Xing, Yan;Cao, Feng
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.899-909
    • /
    • 2015
  • A dual-input boost-buck converter with coupled inductors (DIBBC-CI) is proposed as a thermoelectric generator (TEG) power conditioner with a wide input voltage range. The DIBBC-CI is built by cascading two boost cells and a buck cell with shared inverse coupled filter inductors. Low current ripple on both sides of the TEG and the battery are achieved. Reduced size and power losses of the filter inductors are benefited from the DC magnetic flux cancellation in the inductor core, leading to high efficiency and high power density. The operational principle, impact of coupled inductors, and design considerations for the proposed converter are analyzed in detail. Distributed maximum power point tracking, battery charging, and output control are implemented using a competitive logic to ensure seamless switching among operational modes. Both the simulation and experimental results verify the feasibility of the proposed topology and control.