• 제목/요약/키워드: Distributed neural network

검색결과 169건 처리시간 0.027초

로지스틱회귀분석기법과 인공신경망기법을 이용한 제주지역 산사태가능성분석 (The Landslide Probability Analysis using Logistic Regression Analysis and Artificial Neural Network Methods in Jeju)

  • 권혁춘;이병걸;이창선;고정우
    • 대한공간정보학회지
    • /
    • 제19권3호
    • /
    • pp.33-40
    • /
    • 2011
  • 본 연구에서는 제주지역의 산사태가능성을 분석하기 위하여 사람의 발길이 많은 사라봉, 별도봉 지역과 송악산 지역의 지형 및 토질공학적 사면 붕괴 유발 인자들을 이용하여 로지스틱회귀분석기법과 인공신경망기법을 GIS기법과 결합하여 예측지도를 작성하고 비교분석하였다. 산사태 예측지도를 작성하기 위해서 산사태 발생에 영향을 주는 사면경사, 고도, 건조밀도, 투수계수, 간극율을 선택하였으며 선정된 지역을 대상으로 실시한 야외조사와 토양물성시험 결과를 정리한 후 이를 토대로 GIS기법을 적용하여 각 레이어별 주제도를 작성하였다. 생성된 주제도를 각각 로지스틱회귀분석기법과 인공신경망기법으로 작성하여 비교분석한 결과 사면경사와 간극율의 경중률이 가장 높게 나타났고, 예측지도는 로지스틱회귀분석기법이 더욱 정확한 결과를 나타내었으며, 도로변과 산책로를 중심으로 산사태 발생가능성이 높게 분포하고 있음을 알 수 있었다.

신경회로망을 이용한 분산계층 구조용 도로 유지관리설비의 고장정보처리에 관한 연구 (A Study on the Fault Signal Process of Hierarchical Distributed Structure for Highway Maintenance systems using neural Network)

  • 류승기;문학룡;홍규장;최도혁;한태환;유정웅
    • 조명전기설비학회논문지
    • /
    • 제13권1호
    • /
    • pp.69-76
    • /
    • 1999
  • 본 논문에서는 도로 교통 정보설비의 유지관리를 위해 지능형으로 수행하는 원격감시제어 시스템을 제안하였다. 제안된 시스템은 국도 3호선에 설치되는 도로교통 설비에 대하여 유지관리를 수행하도록 시스템적으로 구축되어 있으며, 전송된 고장 정보는 중앙감시센터의 고장 정보 분석 알고리즘에 의해서 정보의 특성을 파악하도록 하였다. 분석 알고리즘은 신경회로망을 이용하여 다중으로 발생하는 고장정보에 대해서 지식 기반의 고장현상을 추론하도록 제안하였다. 고장 정보 분석 알고리즘의 유용성을 확인하기 위해 현장으로 실시간으로 전송되는 바이너리 신호의 패턴을 5가지 형태로 분류하여 성능을 분석하였으며, 이를 중앙감시센터에서의 유지관리용 운영환경 하에서 구현되도록 하였다.

  • PDF

야지 자율주행을 위한 환경에 강인한 지형분류 기법 (Robust Terrain Classification Against Environmental Variation for Autonomous Off-road Navigation)

  • 성기열;유준
    • 한국군사과학기술학회지
    • /
    • 제13권5호
    • /
    • pp.894-902
    • /
    • 2010
  • This paper presents a vision-based robust off-road terrain classification method against environmental variation. As a supervised classification algorithm, we applied a neural network classifier using wavelet features extracted from wavelet transform of an image. In order to get over an effect of overall image feature variation, we adopted environment sensors and gathered the training parameters database according to environmental conditions. The robust terrain classification algorithm against environmental variation was implemented by choosing an optimal parameter using environmental information. The proposed algorithm was embedded on a processor board under the VxWorks real-time operating system. The processor board is containing four 1GHz 7448 PowerPC CPUs. In order to implement an optimal software architecture on which a distributed parallel processing is possible, we measured and analyzed the data delivery time between the CPUs. And the performance of the present algorithm was verified, comparing classification results using the real off-road images acquired under various environmental conditions in conformity with applied classifiers and features. Experiments show the robustness of the classification results on any environmental condition.

Water quality big data analysis of the river basin with artificial intelligence ADV monitoring

  • Chen, ZY;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Membrane and Water Treatment
    • /
    • 제13권5호
    • /
    • pp.219-225
    • /
    • 2022
  • 5th Assessment Report of the Intergovernmental Panel on Climate Change Weather (AR5) predicts that recent severe hydrological events will affect the quality of water and increase water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed, and solar radiation) were compiled into a representative concentration curve (RC), defined using 8.5. AR5 and future use are calculated based on land use. Semi-distributed emission model Calculate emissions for each target period. Meteorological factors affecting water quality (precipitation, temperature, and flow) were input into a multiple linear regression (MLR) model and an artificial neural network (ANN) to analyze the data. Extensive experimental studies of flow properties have been carried out. In addition, an Acoustic Doppler Velocity (ADV) device was used to monitor the flow of a large open channel connection in a wastewater treatment plant in Ho Chi Minh City. Observations were made along different streams at different locations and at different depths. Analysis of measurement data shows average speed profile, aspect ratio, vertical position Measure, and ratio the vertical to bottom distance for maximum speed and water depth. This result indicates that the transport effect of the compound was considered when preparing the hazard analysis.

Artificial Intelligence Applications as a Modern Trend to Achieve Organizational Innovation in Jordanian Commercial Banks

  • Al-HAWAMDEH, Majd Mohammed;AlSHAER, Sawsan A.
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권3호
    • /
    • pp.257-263
    • /
    • 2022
  • The objective of this study was to see how artificial intelligence applications affected organizational innovation in Jordanian commercial banks. Both independent and dependent variables were measured in three dimensions: expert systems, neural network systems, and fuzzy logic systems for artificial intelligence applications variable. Product innovation, process innovation, and management innovation for the organizational innovation variable. To achieve study objectives, a questionnaire was developed and distributed to a sample of one hundred fifty-three managers in Jordanian commercial banks, who were selected according to the simple random sampling method. Except for the neural network systems dimension, which comes in at an average level, the study indicated that there is a high level of organizational innovation and artificial intelligence applications. Furthermore, the findings revealed that artificial intelligence applications have a significant impact on organizational innovation in Jordanian commercial banks, with the most important artificial intelligence application being a fuzzy logic system. The study suggested keeping track of technological advancements in the field of artificial intelligence applications and incorporating them into banking operations by benchmarking with the best commercial bank practices and allocating a portion of the budget to technological applications and infrastructure development, as well as balancing between technology use and information security risks to ensure client privacy is protected.

머신러닝을 이용한 철광석 가격 예측에 대한 연구 (Forecasting of Iron Ore Prices using Machine Learning)

  • 이우창;김양석;김정민;이충권
    • 한국산업정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.57-72
    • /
    • 2020
  • 철광석의 가격은 여러 국가와 기업들의 수요와 공급에 따라서 높은 변동성이 지속되고 있다. 이러한 비즈니스 환경에서 철광석의 가격을 예측하는 것은 중요해졌다. 본 연구는 머신러닝 기법을 이용하여 철광석이 거래되는 시점으로부터 한 달 전에 철광석 거래가격을 미리 예측하는 모형을 개발하고자 하였다. 예측 모형은 시계열 데이터를 활용한 예측 방법론으로 많이 활용되고 있는 시차분포 모형과 다층신경망 (Multi-layer perceptron), 순환신경망 (Recurrent neural network), 그리고 장단기 기억 네트워크 (Long short-term memory)와 같은 딥 러닝(Deep Learning) 모형을 사용하였다. 측정지표를 통해 개별 모형을 비교한 결과에 따르면, LSTM 모형이 예측 오차가 가장 낮은 것으로 나타났다. 또한, 앙상블 기법을 적용한 모형들을 비교한 결과, 시차분포와 LSTM의 앙상블 모형이 예측오차가 가장 낮은 것으로 나타났다.

A Estimation of Software Development Effort for Distributed Control System by ANFIS

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.375-375
    • /
    • 2000
  • Estimating software development effort remains a complex problem attracting considerable research attention. Improving the estimation techniques available to project managers would facilitate more effective control of time and budgets in software development as well as market. However, estimation is difficult because of its similarity to export judgment approaches and fur its potential as an expert assistant in support of human judgment. Especially, in software development for DCS (Distributed Control System), because of infrastructure software related to target-machines hardware and process characteristics should be considered, estimating software development effort is more complex. This paper suggests software development effort estimation technique using neural network. The methods considered are based on COCOMO and case-based projects. Estimation results applied to case-based project appeared to have value fur software development effort estimation models.

  • PDF

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • 담프로힘;맛사;김석훈
    • 인터넷정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.

잉여수계를 이용한 역전파 신경회로망 구현 (The Implementation of Back Propagation Neural Network using the Residue Number System)

  • 홍봉화;이호선
    • 정보학연구
    • /
    • 제2권2호
    • /
    • pp.145-161
    • /
    • 1999
  • 본 논문에서는 캐리 전파가 없어 고속연산이 가능한 잉여 수 체계를 이용하여 고속으로 동작할 수 있는 역전파 신경회로망을 설계방법을 제안하였다. 설계된 신경회로망은 잉여수계를 이용한 MAC 연산기와 혼합계수 변환을 이용한 시그모이드 함수 연산 부로 구성되며, 설계된 회로는 VHDL로 기술하였고 Compass 툴로 합성하였다. 실험결과, 가장 나쁜 경로일 경우, 약 19nsec의 지연속도를 보였고, 기존의 실수 연산기에 비하여 약 40%정도 하드웨어 크기를 줄일 수 있었다. 본 논문에서 설계한 신경회로망은 실시간 처리를 요하는 병렬분산처리 시스템에 적용될 수 있을 것으로 기대된다.

  • PDF

분산 모바일 멀티에이전트 플랫폼을 이용한 사용자 기반 디지털 라이브러리 구축 (A Personal Digital Library on a Distributed Mobile Multiagents Platform)

  • 조영임
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권12호
    • /
    • pp.1637-1648
    • /
    • 2004
  • 분산 환경에서 디지털 라이브러리 구축시 기존의 단일 에이전트를 이용한 클라이언트/서버 방식으로 시스템을 구축할 경우, 일차원적인 자료검색으로 인해 검색결과의 관련성이 없고, 검색 견과에 대한 사용자의 성향이 반영되지 않으며, 클라이언트가 서버에 접속할 때마다 인증을 받아야 하므로 다수의 서버 접근시 문서 처리 효율이 낮고 사용하기 불편하다는 문제점을 갖는다. 따라서 본 논문에서는 이의 해결을 위해 기존의 멀티 에이전트 플랫폼인 DECAF와 표준안으로 제시되는 모바일 ORB인 Voyager를 응용해 새로운 모바일 환경에 적합한 멀티 에이전트 플랫폼을 개발 제안하였고, 이를 이용한 사용자 기반의 디지털 라이브러리 시스템(PDS)을 구축하였다. 이러한 접근방법은 국내외적으로 처음 시도되는 연구이다. 새로운 플렛폼은 관련정보의 검색문제를 위해 신경회로망을 이용한 문서분류를 통해 관련 문서의 검색을 세분화시킴으로써 검색결과의 관련성을 높였고. 사용자 성향을 반영하기 위해 모듈화된 클라이언트를 구성하여 신경회로망을 이용함으로써 사용자의 성장과 탐색 결과를 최적화 시켰으며, 네트워크 문제를 위해 멀티에이전트 플랫폼과 모바일 클래스를 이용한 모바일 기능을 개발하였다. 또한 모바일 시스템과 멀티에이전트 시스템을 적절히 결합하고 멀티 에이전트 사이의 협상 알고리즘과 스케줄링 방법을 개발함으로써 제안한 플랫폼이 효율적으로 동작하도록 구성하였다. 시뮬레이션한 결과, 분산환경에서 모바일 서버의 개수와 에이전트의 개수가 늘어날수록 PDS는 기존의 디지털 라이브러리보다는 탐색시간이 훨씬 줄어들었고 결과에 대한 사용자 만족도도 기존 C/S 방식에 비해 약 4배정도 향상됨을 알 수 있었다