• 제목/요약/키워드: Distributed generator(DG)

검색결과 34건 처리시간 0.025초

배전 계통에 연계된 분산전원의 발전량 예측 알고리즘 (Estimation of the Generating Power for Distributed Generations Interconnected with Distribution Networks)

  • 최돈만;장성일;김광호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.327-330
    • /
    • 2003
  • This paper proposes an estimation algorithm for the generating power of distributed generations(DG) interconnected with distribution networks. These days, DG are rapidly increasing and most of them are interconnected with distribution networks. The DG can supply power into the distribution network, which may make significant impact on fault current and the protection scheme of the interconnected distribution networks. Generally these influences of DG is proportioned as the distributed generator's power. Therefore, it is important to forecast the output power of distributed generator in PCC(point of common coupling). This paper presents the prediction method of DG's power by monitoring the current and phase difference.

  • PDF

배전선 보호기기 선정 시 계통 연계 분산전원의 용량 고려 (Consideration of the Distributed Generator's Capacity in Determining the Protective Devices)

  • 박인기;장성일;박용업;김세근;김광호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.331-333
    • /
    • 2003
  • This paper describes the effect of the interconnected wind turbine generators on fault current level of distribution networks. Distributed generator(DG) interconnected with grid can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the distribution power line with DG, the fault current level measured in a relaying point might be higher than that of distribution network without wind turbine generator due to the contribution of wind farm. Consequently, it may destroy the conventional protective devices applied in the distribution network with DG. Simulation results shows that the current level of fault happened in the power line with DG depends on the power output of DG.

  • PDF

소규모 분산에너지시스템의 제어구조 및 운전 (마이크로터빈 중심) (Control and Operation of a Small Scale Distributed Energy System)

  • 홍원표;조재훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1139_1141
    • /
    • 2009
  • Distributed Generation (DG) is predicted to play a important role in electric power system in the near future. insertion of DG system into existing distribution network has great impact on real-time system operation and planning. It is widely accepted that micro turbine generation (MTG) systems are currently attracting lot of attention to meet customers need in the distributed power generation market In order to investigate the performance of MT generation systems, their efficient modeling is required. This paper presents the modeling and simulation of a MT generation system suitable for grid-connected operation. The system comprises of a permanent magnet synchronous generator driven by a MT. A brief description of the overall system is given, and mathematical models for the MT and permanent magnet synchronous generator are presented. Also, the use of power electronics in conditioning the power output of the generating system is demonstrated. Simulation studies with MATLAB/Simulink have been carried out in grid-connected operation mode of a DG system. The control strategies for grid connected operation mode of DG system is also presented.

  • PDF

분산전원이 도입된 배전계통에 초전도한류기 적용시 계통보호 시스템의 영향에 관한 연구 (A Study on the Protection of Power Distribution System with the Distributed Generator and Superconducting Fault Current Limiter)

  • 김명현;김진석;임성훈;김재철
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1226-1231
    • /
    • 2012
  • The demand for electrical power has been significantly increased to satisfy the customers. As a result, a power distribution system have been advanced by power system's interconnection, installation of distributed generator(DG) and so on. The improvable power distribution system included the problem of increasable fault current. Superconducting fault current limiter (SFCL) is one of the solutions to limit a fault current. Therefore, to solve the problem of fault current by SFCL, simulation was progressed and the simulation used a PSCAD/EMTDC.

Coordinated Voltage and Reactive Power Control Strategy with Distributed Generator for Improving the Operational Efficiency

  • Jeong, Ki-Seok;Lee, Hyun-Chul;Baek, Young-Sik;Park, Ji-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1261-1268
    • /
    • 2013
  • This study proposes a voltage and reactive coordinative control strategy with distributed generator (DG) in a distribution power system. The aim is to determine the optimum dispatch schedules for an on-load tap changer (OLTC), distributed generator settings and all shunt capacitor switching on the load and DG generation profile in a day. The proposed method minimizes the real power losses and improves the voltage profile using squared deviations of bus voltages. The results indicate that the proposed method reduces the real losses and voltage fluctuations and improve receiving power factor. This paper proposes coordinated voltage and reactive power control methods that adjust optimal control values of capacitor banks, OLTC, and the AVR of DGs by using a voltage sensitivity factor (VSF) and dynamic programming (DP) with branch-and-bound (B&B) method. To avoid the computational burden, we try to limit the possible states to 24 stages by using a flexible searching space at each stage. Finally, we will show the effectiveness of the proposed method by using operational cost of real power losses and voltage deviation factor as evaluation index for a whole day in a power system with distributed generators.

Analytical and sensitivity approaches for the sizing and placement of single DG in radial system

  • Bindumol, E.K.;Babu, C.A.
    • Advances in Energy Research
    • /
    • 제4권2호
    • /
    • pp.163-176
    • /
    • 2016
  • Rapid depletion of fossil based oil, coal and gas reserves and its greater demand day by day necessitates the search for other alternatives. Severe environmental impacts caused by the fossil fire based power plants and the escalating fuel costs are the major challenges faced by the electricity supply industry. Integration of Distributed Generators (DG) especially, wind and solar systems to the grid has been steadily increasing due to the concern of clean environment. This paper focuses on a new simple and fast load flow algorithm named Backward Forward Sweep Algorithm (BFSA) for finding the voltage profile and power losses with the integration of various sizes of DG at different locations. Genetic Algorithm (GA) based BFSA is adopted in finding the optimal location and sizing of DG to attain an improved voltage profile and considerable reduced power loss. Simulation results show that the proposed algorithm is more efficient in finding the optimal location and sizing of DG in 15-bus radial distribution system (RDS).The authenticity of the placement of optimized DG is assured with other DG placement techniques.

마이크로터빈발전시스템 독립운전을 위한 동적 모델링 및 시뮬레이션 (Dynamic model and simulation of microturbine generation system for islanding mode operation)

  • 홍원표;조재훈
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.453-457
    • /
    • 2009
  • Distributed Generation (DG) is predicted to play a important role in electric power system in the near future. insertion of DG system into existing distribution network has great impact on real-time system operation and planning. It is widely accepted that micro turbine generation (MTG) systems are currently attracting lot of attention to meet customers need in the distributed power generation market. In order to investigate the performance of MT generation systems, their efficient modeling is required. This paper presents the modeling and simulation of a MT generation system suitable for isolated operation. The system comprises of a Permanent magnet synchronous generator driven by a MT. A brief description of the overall system is given, and mathematical models for the MT and permanent magnet synchronous generator are presented. Also, the use of power electronics in conditioning the power output of the generating system is demonstrated. Simulation studies with MATLAB/Simulink have been carried out in islanding operation mode of a DG system.

  • PDF

마이크로터빈용 고속 영구자석 동기발전기 운전 특성 (Operating Characteristics of High Speed PM Synchronous Generator for Microturbine)

  • 안종보;정연호;강도현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.141-143
    • /
    • 2004
  • Distributed generation(DG) using microturbine will be adopted widely because of its various usages and merits such as high heat efficiency, environmental-friendliness. Commercialized DG using microtubine that rotates up to $60,000\~100,000[rpm]$ converters mechanical power to electricity by permanent magnet synchronous machine. This paper presents comparative test and simulation results of PMSM as generator. Test was done by diode rectifier and inverter. Parameters used in the simulation are driven from FEM analysis. Under various speed and load conditions, V-I characteristics matches well and it suggests the possibility of high speed PMSM as generator. DG operating at stand alone and grid connection mode will be developed.

  • PDF

마이크로터빈발전시스템 계통연계운전을 위한 동적 모델링 및 시뮬레이션 (Dynamic model and simulation of microturbine generation system for grid-connected operation)

  • 홍원표;조재훈
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.105-110
    • /
    • 2009
  • Distributed Generation (DG) is predicted to play a important role in electric power system in the near future. insertion of DG system into existing distribution network has great impact on real-time system operation and planning. It is widely accepted that micro turbine generation (MTG) systems are currently attracting lot of attention to meet customers need in the distributed power generation market In order to investigate the performance of MT generation systems, their efficient modeling is required. This paper presents the modeling and simulation of a MT generation system suitable for grid-connected operation. The system comprises of a permanent magnet synchronous generator driven by a MT. A brief description of the overall system is given, and mathematical models for the MT and permanent magnet synchronous generator are presented. Also, the use of Power electronics in conditioning the power output of the generating system is demonstrated. Simulation studies with MATLAB/Simulink have been carried out in grid-connected operation mode of a DG system. The control strategies for grid connected operation mode of DG system is also presented.

  • PDF

고조파을 이용한 분산전원 고립운전 검출 알고리즘 (Islanding Detection Algorithm Based on a Harmonic for Distributed Generators)

  • 고철진;권영진;강상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.301-303
    • /
    • 2004
  • This paper presents an islanding detection algorithm based on the second harmonic. When the DG(distributed Generator) was connected with utility supply, for maintenance and repair of equipment, an islanding occurred. So islanding detection algorithm must be developed for safety of human. Although the DG generating power is similar to power consumption. the proposed algorithm can detect the islanding condition very successfully.

  • PDF