• Title/Summary/Keyword: Distributed Reinforcement Learning

Search Result 35, Processing Time 0.023 seconds

Performance Improvement of Evolution Strategies using Reinforcement Learning

  • Sim, Kwee-Bo;Chun, Ho-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.125-130
    • /
    • 2001
  • In this paper, we propose a new type of evolution strategies combined with reinforcement learning. We use the variances of fitness occurred by mutation to make the reinforcement signals which estimate and control the step length of mutation. With this proposed method, the convergence rate is improved. Also, we use cauchy distributed mutation to increase global convergence faculty. Cauchy distributed mutation is more likely to escape from a local minimum or move away from a plateau. After an outline of the history of evolution strategies, it is explained how evolution strategies can be combined with the reinforcement learning, named reinforcement evolution strategies. The performance of proposed method will be estimated by comparison with conventional evolution strategies on several test problems.

  • PDF

Reinforcement learning multi-agent using unsupervised learning in a distributed cloud environment

  • Gu, Seo-Yeon;Moon, Seok-Jae;Park, Byung-Joon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.192-198
    • /
    • 2022
  • Companies are building and utilizing their own data analysis systems according to business characteristics in the distributed cloud. However, as businesses and data types become more complex and diverse, the demand for more efficient analytics has increased. In response to these demands, in this paper, we propose an unsupervised learning-based data analysis agent to which reinforcement learning is applied for effective data analysis. The proposal agent consists of reinforcement learning processing manager and unsupervised learning manager modules. These two modules configure an agent with k-means clustering on multiple nodes and then perform distributed training on multiple data sets. This enables data analysis in a relatively short time compared to conventional systems that perform analysis of large-scale data in one batch.

Behavior leaning and evolution of collective autonomous mobile robots using reinforcement learning and distributed genetic algorithms (강화학습과 분산유전알고리즘을 이용한 자율이동로봇군의 행동학습 및 진화)

  • 이동욱;심귀보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.8
    • /
    • pp.56-64
    • /
    • 1997
  • In distributed autonomous robotic systems, each robot must behaves by itself according to the its states and environements, and if necessary, must cooperates with other orbots in order to carray out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, the new learning and evolution method based on reinforement learning having delayed reward ability and distributed genectic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. Reinforement learning having delayed reward is still useful even though when there is no immediate reward. And by distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the perfodrmance of evolution, selective crossover using the characteristic of reinforcement learning is adopted in this paper, we verify the effectiveness of the proposed method by applying it to cooperative search problem.

  • PDF

Fuzzy Q-learning using Distributed Eligibility (분포 기여도를 이용한 퍼지 Q-learning)

  • 정석일;이연정
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.388-394
    • /
    • 2001
  • Reinforcement learning is a kind of unsupervised learning methods that an agent control rules from experiences acquired by interactions with environment. The eligibility is used to resolve the credit-assignment problem which is one of important problems in reinforcement learning, Conventional eligibilities such as the accumulating eligibility and the replacing eligibility are ineffective in use of rewards acquired in learning process, since on1y one executed action for a visited state is learned. In this paper, we propose a new eligibility, called the distributed eligibility, with which not only an executed action but also neighboring actions in a visited state are to be learned. The fuzzy Q-learning algorithm using the proposed eligibility is applied to a cart-pole balancing problem, which shows the superiority of the proposed method to conventional methods in terms of learning speed.

  • PDF

Energy-Efficient Offloading with Distributed Reinforcement Learning for Edge Computing in Home Networks

  • Ducsun Lim;Dongkyun Lim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.36-45
    • /
    • 2024
  • This paper introduces a decision-making framework for offloading tasks in home network environments, utilizing Distributed Reinforcement Learning (DRL). The proposed scheme optimizes energy efficiency while maintaining system reliability within a lightweight edge computing setup. Effective resource management has become crucial with the increasing prevalence of intelligent devices. Conventional methods, including on-device processing and offloading to edge or cloud systems, need help to balance energy conservation, response time, and dependability. To tackle these issues, we propose a DRL-based scheme that allows flexible and enhanced decision-making regarding offloading. Simulation results demonstrate that the proposed method outperforms the baseline approaches in reducing energy consumption and latency while maintaining a higher success rate. These findings highlight the potential of the proposed scheme for efficient resource management in home networks and broader IoT environments.

Deep Reinforcement Learning Based Distributed Offload Policy for Collaborative Edge Computing in Multi-Edge Networks (멀티 엣지 네트워크에서 협업 엣지컴퓨팅을 위한 심층강화학습 기반 분산 오프로딩 정책 연구)

  • Junho Jeong;Joosang Youn
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.5
    • /
    • pp.11-19
    • /
    • 2024
  • As task offloading from user devices transitions from the cloud to the edge, the demand for efficient resource management techniques has emerged. While numerous studies have employed reinforcement learning to address this challenge, many fail to adequately consider the overhead associated with real-world offloading tasks. This paper proposes a reinforcement learning-based distributed offloading policy generation method that incorporates task overhead. A simulation environment is constructed to validate the proposed approach. Experimental results demonstrate that the proposed method reduces edge queueing time, achieving up to 46.3% performance improvement over existing approaches.

A Study of Collaborative and Distributed Multi-agent Path-planning using Reinforcement Learning

  • Kim, Min-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.9-17
    • /
    • 2021
  • In this paper, an autonomous multi-agent path planning using reinforcement learning for monitoring of infrastructures and resources in a computationally distributed system was proposed. Reinforcement-learning-based multi-agent exploratory system in a distributed node enable to evaluate a cumulative reward every action and to provide the optimized knowledge for next available action repeatedly by learning process according to a learning policy. Here, the proposed methods were presented by (a) approach of dynamics-based motion constraints multi-agent path-planning to reduce smaller agent steps toward the given destination(goal), where these agents are able to geographically explore on the environment with initial random-trials versus optimal-trials, (b) approach using agent sub-goal selection to provide more efficient agent exploration(path-planning) to reach the final destination(goal), and (c) approach of reinforcement learning schemes by using the proposed autonomous and asynchronous triggering of agent exploratory phases.

Power Trading System through the Prediction of Demand and Supply in Distributed Power System Based on Deep Reinforcement Learning (심층강화학습 기반 분산형 전력 시스템에서의 수요와 공급 예측을 통한 전력 거래시스템)

  • Lee, Seongwoo;Seon, Joonho;Kim, Soo-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.163-171
    • /
    • 2021
  • In this paper, the energy transaction system was optimized by applying a resource allocation algorithm and deep reinforcement learning in the distributed power system. The power demand and supply environment were predicted by deep reinforcement learning. We propose a system that pursues common interests in power trading and increases the efficiency of long-term power transactions in the paradigm shift from conventional centralized to distributed power systems in the power trading system. For a realistic energy simulation model and environment, we construct the energy market by learning weather and monthly patterns adding Gaussian noise. In simulation results, we confirm that the proposed power trading systems are cooperative with each other, seek common interests, and increase profits in the prolonged energy transaction.

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

Deep Reinforcement Learning-based Distributed Routing Algorithm for Minimizing End-to-end Delay in MANET (MANET에서 종단간 통신지연 최소화를 위한 심층 강화학습 기반 분산 라우팅 알고리즘)

  • Choi, Yeong-Jun;Seo, Ju-Sung;Hong, Jun-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1267-1270
    • /
    • 2021
  • In this paper, we propose a distributed routing algorithm for mobile ad hoc networks (MANET) where mobile devices can be utilized as relays for communication between remote source-destination nodes. The objective of the proposed algorithm is to minimize the end-to-end communication delay caused by transmission failure with deep channel fading. In each hop, the node needs to select the next relaying node by considering a tradeoff relationship between the link stability and forward link distance. Based on such feature, we formulate the problem with partially observable Markov decision process (MDP) and apply deep reinforcement learning to derive effective routing strategy for the formulated MDP. Simulation results show that the proposed algorithm outperforms other baseline schemes in terms of the average end-to-end delay.