• 제목/요약/키워드: Distributed Reinforcement Learning

검색결과 35건 처리시간 0.02초

Performance Improvement of Evolution Strategies using Reinforcement Learning

  • Sim, Kwee-Bo;Chun, Ho-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.125-130
    • /
    • 2001
  • In this paper, we propose a new type of evolution strategies combined with reinforcement learning. We use the variances of fitness occurred by mutation to make the reinforcement signals which estimate and control the step length of mutation. With this proposed method, the convergence rate is improved. Also, we use cauchy distributed mutation to increase global convergence faculty. Cauchy distributed mutation is more likely to escape from a local minimum or move away from a plateau. After an outline of the history of evolution strategies, it is explained how evolution strategies can be combined with the reinforcement learning, named reinforcement evolution strategies. The performance of proposed method will be estimated by comparison with conventional evolution strategies on several test problems.

  • PDF

Reinforcement learning multi-agent using unsupervised learning in a distributed cloud environment

  • Gu, Seo-Yeon;Moon, Seok-Jae;Park, Byung-Joon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권2호
    • /
    • pp.192-198
    • /
    • 2022
  • Companies are building and utilizing their own data analysis systems according to business characteristics in the distributed cloud. However, as businesses and data types become more complex and diverse, the demand for more efficient analytics has increased. In response to these demands, in this paper, we propose an unsupervised learning-based data analysis agent to which reinforcement learning is applied for effective data analysis. The proposal agent consists of reinforcement learning processing manager and unsupervised learning manager modules. These two modules configure an agent with k-means clustering on multiple nodes and then perform distributed training on multiple data sets. This enables data analysis in a relatively short time compared to conventional systems that perform analysis of large-scale data in one batch.

강화학습과 분산유전알고리즘을 이용한 자율이동로봇군의 행동학습 및 진화 (Behavior leaning and evolution of collective autonomous mobile robots using reinforcement learning and distributed genetic algorithms)

  • 이동욱;심귀보
    • 전자공학회논문지S
    • /
    • 제34S권8호
    • /
    • pp.56-64
    • /
    • 1997
  • In distributed autonomous robotic systems, each robot must behaves by itself according to the its states and environements, and if necessary, must cooperates with other orbots in order to carray out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, the new learning and evolution method based on reinforement learning having delayed reward ability and distributed genectic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. Reinforement learning having delayed reward is still useful even though when there is no immediate reward. And by distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the perfodrmance of evolution, selective crossover using the characteristic of reinforcement learning is adopted in this paper, we verify the effectiveness of the proposed method by applying it to cooperative search problem.

  • PDF

분포 기여도를 이용한 퍼지 Q-learning (Fuzzy Q-learning using Distributed Eligibility)

  • 정석일;이연정
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.388-394
    • /
    • 2001
  • 강화학습은 에이전트가 환경과의 상호작용을 통해 획득한 경험으로부터 제어 규칙을 학습하는 방법이다. 강화학습의 중요한 문제 중의 하나인 신뢰 할당 문제를 해결하기 위해 기여도가 사용되는데, 누적 기여도나 대체 기여도와 같은 기존의 기여도를 이용한 방법은 방문한 상태에서 수행된 행위만을 학습시키기 때문에 학습 자정에서 획득된 보답 신호를 효과적으로 사용하지 못한다. 본 논문에서는 방문한 상태에서 수행된 행위뿐만 아니라 인접 행위들도 학습될 수 있도록 하는 새로운 기여도로써 분포 기여도를 제안한다. 제안된 기여도를 이용한 퍼지 Q-learning 알고리즘을 역진자 시스템에 적용하여 학습 속도면에서 기존의 방법에 비해 우수함을 보인다.

  • PDF

Energy-Efficient Offloading with Distributed Reinforcement Learning for Edge Computing in Home Networks

  • Ducsun Lim;Dongkyun Lim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권4호
    • /
    • pp.36-45
    • /
    • 2024
  • This paper introduces a decision-making framework for offloading tasks in home network environments, utilizing Distributed Reinforcement Learning (DRL). The proposed scheme optimizes energy efficiency while maintaining system reliability within a lightweight edge computing setup. Effective resource management has become crucial with the increasing prevalence of intelligent devices. Conventional methods, including on-device processing and offloading to edge or cloud systems, need help to balance energy conservation, response time, and dependability. To tackle these issues, we propose a DRL-based scheme that allows flexible and enhanced decision-making regarding offloading. Simulation results demonstrate that the proposed method outperforms the baseline approaches in reducing energy consumption and latency while maintaining a higher success rate. These findings highlight the potential of the proposed scheme for efficient resource management in home networks and broader IoT environments.

멀티 엣지 네트워크에서 협업 엣지컴퓨팅을 위한 심층강화학습 기반 분산 오프로딩 정책 연구 (Deep Reinforcement Learning Based Distributed Offload Policy for Collaborative Edge Computing in Multi-Edge Networks)

  • 정준호;윤주상
    • 한국산업정보학회논문지
    • /
    • 제29권5호
    • /
    • pp.11-19
    • /
    • 2024
  • 유저 디바이스의 태스크 오프로딩을 처리하는 위치가 클라우드에서 엣지로 이동함에 따라, 이를 효과적으로 처리하기 위한 자원 관리 기술의 필요성이 대두되고 있다. 많은 연구에서 강화 학습을 통해 이 문제를 해결하고자 하였으나, 실제 오프로딩 태스크에서 발생하는 오버헤드를 충분히 반영하지 못하였다. 본 논문에서는 태스크의 오버헤드를 고려한 강화학습 기반 분산 오프로딩 정책 생성 기법을 제안하고, 이를 검증하기 위한 시뮬레이션 환경을 구축하였다. 실험을 통해 해당 기법이 엣지의 큐 대기시간을 감소시켜 기존 기법 대비 최대 46.3%의 성능 향상이 있음을 보였다.

A Study of Collaborative and Distributed Multi-agent Path-planning using Reinforcement Learning

  • Kim, Min-Suk
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권3호
    • /
    • pp.9-17
    • /
    • 2021
  • 동적 시스템 환경에서 지능형 협업 자율 시스템을 위한 기계학습 기반의 다양한 방법들이 연구 및 개발되고 있다. 본 연구에서는 분산 노드 기반 컴퓨팅 방식의 자율형 다중 에이전트 경로 탐색 방법을 제안하고 있으며, 지능형 학습을 통한 시스템 최적화를 위해 강화학습 방법을 적용하여 다양한 실험을 진행하였다. 강화학습 기반의 다중 에이전트 시스템은 에이전트의 연속된 행동에 따른 누적 보상을 평가하고 이를 학습하여 정책을 개선하는 지능형 최적화 기계학습 방법이다. 본 연구에서 제안한 방법은 강화학습 기반 다중 에이전트 최적화 경로 탐색 성능을 높이기 위해 학습 초기 경로 탐색 방법을 개선한 최적화 방법을 제안하고 있다. 또한, 분산된 다중 목표를 구성하여 에이전트간 정보 공유를 이용한 학습 최적화를 시도하였으며, 비동기식 에이전트 경로 탐색 기능을 추가하여 실제 분산 환경 시스템에서 일어날 수 있는 다양한 문제점 및 한계점에 대한 솔루션을 제안하고자 한다.

심층강화학습 기반 분산형 전력 시스템에서의 수요와 공급 예측을 통한 전력 거래시스템 (Power Trading System through the Prediction of Demand and Supply in Distributed Power System Based on Deep Reinforcement Learning)

  • 이승우;선준호;김수현;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.163-171
    • /
    • 2021
  • 본 논문은 분산형 전력 시스템에서 심층강화학습 기반의 전력 생산 환경 및 수요와 공급을 예측하며 자원 할당 알고리즘을 적용해 전력거래 시스템 연구의 최적화된 결과를 보여준다. 전력 거래시스템에 있어서 기존의 중앙집중식 전력 시스템에서 분산형 전력 시스템으로의 패러다임 변화에 맞추어 전력거래에 있어서 공동의 이익을 추구하며 장기적인 거래의 효율을 증가시키는 전력 거래시스템의 구축을 목표로 한다. 심층강화학습의 현실적인 에너지 모델과 환경을 만들고 학습을 시키기 위해 날씨와 매달의 패턴을 분석하여 데이터를 생성하며 시뮬레이션을 진행하는 데 있어서 가우시안 잡음을 추가해 에너지 시장 모델을 구축하였다. 모의실험 결과 제안된 전력 거래시스템은 서로 협조적이며 공동의 이익을 추구하며 장기적으로 이익을 증가시킨 것을 확인하였다.

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

MANET에서 종단간 통신지연 최소화를 위한 심층 강화학습 기반 분산 라우팅 알고리즘 (Deep Reinforcement Learning-based Distributed Routing Algorithm for Minimizing End-to-end Delay in MANET)

  • Choi, Yeong-Jun;Seo, Ju-Sung;Hong, Jun-Pyo
    • 한국정보통신학회논문지
    • /
    • 제25권9호
    • /
    • pp.1267-1270
    • /
    • 2021
  • In this paper, we propose a distributed routing algorithm for mobile ad hoc networks (MANET) where mobile devices can be utilized as relays for communication between remote source-destination nodes. The objective of the proposed algorithm is to minimize the end-to-end communication delay caused by transmission failure with deep channel fading. In each hop, the node needs to select the next relaying node by considering a tradeoff relationship between the link stability and forward link distance. Based on such feature, we formulate the problem with partially observable Markov decision process (MDP) and apply deep reinforcement learning to derive effective routing strategy for the formulated MDP. Simulation results show that the proposed algorithm outperforms other baseline schemes in terms of the average end-to-end delay.