• Title/Summary/Keyword: Distributed Power Control

Search Result 646, Processing Time 0.025 seconds

Power Control Methods for Microgrid with Multiple Distributed Generators (다중 분산전원으로 구성된 마이크로그리드의 유무효전력 제어원리 연구)

  • Chung, Il-Yop;Won, Dong-Jun;Moon, Seung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.582-588
    • /
    • 2008
  • Microgrids are new distribution level power networks that consist of various electronically-interlaced generators and sensitive loads. The important control object of Microgrids is to supply reliable and high-quality power even during the faults or loss of mains(islanding) cases. This paper presents power control methods to coordinate multiple distributed generators(DGs) against abnormal cases such as islanding and load power variations. Using speed-droop and voltage-droop characteristics, multiple distributed generators can share the load power based on locally measured signals without any communications between them. This paper adopts the droop controllers for multiple DG control and improved them by considering the generation speed of distribution level generators. Dynamic response of the proposed control scheme has been investigated under severe operation cases such as islanding and abrupt load changes through PSCAD/EMTDC simulations.

Control of PCC Voltage Variation by Reactive Power Compensation of Distributed Source (분산전원의 무효전력 보상을 통한 PCC 전압 변동 제어)

  • Han, Sanghun;Lim, Jong-ung;Han, Yu;Cho, Younghoon;Choe, Gyu-ha
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.180-181
    • /
    • 2017
  • Recently as distributed source has increased, the distribution system has changed from unidirectional power flow to bi-directional power flow. This power flow causes the PCC voltage variation, which can adversely affect voltage sensitive loads. In this paper, the relation between the active power, reactive power and PCC voltage of the distributed source is analyzed, and the PCC voltage control scheme by reactive power compensation is proposed in the distributed source itself. In addition, limitations and conditions according to the standard for interconnecting distributed resources are specified and verified through simulation.

  • PDF

Distributed Constrained Power Control with Non stationary Relaxation Factor in CDMA Cellular systems (CDMA 셀룰라 시스템에서 변동 경감 요소를 가지는 제한적 분산 전력제어)

  • Oh, Do-Chang;Lee, Moo-Young;Lee, Dong-Gi;Her, Yong-Do
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.4
    • /
    • pp.291-302
    • /
    • 2006
  • The current paper proposes fast distributed constrained power control (FDCPC) with a non stationary relaxation factor as the next power update for CDMA cellular power control systems. A review is also given of unconstrained control algorithms: distributed power control (DPC), unconstrained second order power control (USOPC), and DPC with a stationary relaxation factor (DPCSRF) To improve the performance of outage probability convergence, DCPC with a non stationary relaxation factor (FDCPC) is proposed. Under constrained conditions, the convergence rate of FDCPC is shown to outperform that of DCPC and constrained second order power control(CSOPC).

  • PDF

Distributed Adaptive Virtual Impedance Control to Eliminate Reactive Power Sharing Errors in Single-Phase Islanded Microgrids

  • Hoang, Tuan V.;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.120-121
    • /
    • 2017
  • This paper proposes an enhanced distributed generation (DG) unit with an adaptive virtual impedance control approach in order to address the inaccurate reactive power sharing problem. The proposed method can adaptively regulate the DG virtual impedance, and the effect of the mismatch in feeder impedances is compensated to share the reactive power accurately. The proposed control strategy is fully distributed and the need for the microgrid central controller is eliminated. Furthermore, the proposed method can be directly implemented without requirement of pre-knowledge of the feeder impedances. Simulations are performed to validate the effectiveness of the proposed control approach.

  • PDF

The Optimal Volt/Var Control Algorithm with Distributed Generation of Distribution System (분산전원이 연계된 배전계통의 최적 전압/무효전력 제어 알고리즘)

  • Kim, Young-In;Lim, Il-Hyung;Choi, Myeon-Song;Lee, Seung-Jae;Lee, Sung-Woo;Ha, Bok-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.298-305
    • /
    • 2010
  • In this paper, a new algorithm of optimal Volt/Var Control is proposed using Volt/Var control for the Distribution Automation System (DAS) with Distributed Generation (DG) based on the modeling of the distributed load and the distributed current. In the proposed, algorithm based on the modeling of the distributed load and the distributed current are estimated from constants of four terminals using the measurement of the current and power factor from a Feeder Remote Terminal Unit (FRTU) and DG data from RTU for DG. For the optimal Volt/Var Control, the gradient method is applied to find optimal solution for tap, capacity and power control of OLTC (On-Load Tap Changers), SVR (Step Voltage Regulator), PC (Power Condenser) and DG (Distributed Generation). In the case studies, the estimation and control of the voltages have been testified in a radial distribution system with DG using matlab program.

The Development of Boiler Feedwater Master Control System for Power Plant (발전소 보일러 급수 주제어 시스템의 개발)

  • Lim, Gun-Pyo;Park, Doo-Yong;Kim, Jong-Ahn;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.442-450
    • /
    • 2012
  • Almost domestic power plants are being operated by foreign distributed control system. Many korean power plants are being operated over their lifetime so they need to be retrofitted. So we are developing the distributed control system to solve this problem by our own technique. The simulator was already made to verify the reliability of the algorithms. The unit loop function tests of all algorithms were finished in the actual distributed control system for installation of power plant and their results were satisfactory. The unit loop function tests are for each unit equipment algorithm. So the total operation tests will be made with all algorithms together in the actual distributed control system to be applied to power plant. When the verification through all tests is finished, algorithms with hardware will be scheduled to be installed and operated in the actual power plant. This research result will contribute to the safe operation of the deteriorated power plant and korean electric power supply as well as domestic technical progress. This entire processes and results for the development are written for the example of boiler feedwater master algorithm out of all algorithms in this paper.

A Positioning Method of Distributed Power System by Considering Characteristics of Droop Control in a DC Microgrid

  • Ko, Byoung-Sun;Lee, Gi-Young;Kim, Sang-Il;Kim, Rae-Young;Cho, Jin-Tae;Kim, Ju-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.620-630
    • /
    • 2018
  • In this paper, a positioning method of distributed power system is proposed to minimize the average voltage variation of a DC microgrid through voltage sensitivity analysis. The voltage sensitivity under a droop control depends on the position of the distributed power system. In order to acquire a precise voltage sensitivity under a droop control, we analyzed the power flow by introducing a droop bus with the considerations of the droop characteristics. The results of the positioning method are verified through PSCAD/EMTDC simulation.

A Distributed Constrained Power Control with Variable State Feedback Gain in CDMA Cellular Systems (가변 상태궤환 이득을 이용한 CDMA 셀룰라 시스템의 제한된 분산전력제어)

  • 이무영;오도창;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1065-1070
    • /
    • 2003
  • We present a power control with variable state feedback gain (VFPC) to improve outage convergence rate of distributed constrained power control. The variable state feedback gain includes the information of the desired SIR changes and must be a decreasing sequence for the convergence. The proof of the convergence is given. The proposed algorithm can improve the outage convergence rate and SIR (Signal to Interference Ratio) response at transient as well as at steady state. The simulation results are given to demonstrate the feasibility of the proposed scheme.

Distributed Bit Loading and Power Control Algorithm to Increase System Throughput of Ad-hoc Network (Ad-hoc 네트워크의 Throughput 향상을 위한 적응적 MCS 레벨 기반의 분산형 전력 제어 알고리즘)

  • Kim, Young-Bum;Wang, Yu-Peng;Chang, Kyung-Hi;Yun, Chang-Ho;Park, Jong-Won;Lim, Yong-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.315-321
    • /
    • 2010
  • In Ad-hoc networks, centralized power control is not suitable due to the absence of base stations, which perform the power control operation in the network to optimize the system performance. Therefore, each node should perform power control algorithm distributedly instead of the centralized one. The conventional distributed power control algorithm does not consider the adaptive bit loading operation to change the MCS (modulation and coding scheme) according to the received SINR (signal to interference and noise ratio), which limits the system throughput. In this paper, we propose a novel distributed bit loading and power control algorithm, which considers the adaptive bit loading operation to increase total system throughput and decrease outage probability. Simulation results show that the proposed algorithm performs much better than the conventional algorithm.

Feeder Loop Line Control for the Voltage Stabilization of Distribution Network with Distributed Generators

  • Jeong, Bong-Sang;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • When renewable sources are connected to the distribution network in the form of a distributed generators(DGs), the effect of intermittent output appears as voltage fluctuation. The surplus power at the consumer ends results in the reverse power flow to the distribution network. This reverse power flow causes several problems to the distribution network such as overvoltage. Application of the reactive power control equipment and power flow control by means of BTB inverter have been suggested as the general solutions to overcome the overvoltage, but they are not economically feasible since they require high cost devices. Herein, we suggest the feeder loop line switch control method to solve the problem.