• Title/Summary/Keyword: Distributed Parallel Process

Search Result 93, Processing Time 0.027 seconds

An Efficient Distributed Shared Memory System for Parallel GIS (병렬 GIS를 위한 효율적인 분산공유메모리 시스템)

  • Jeong, Sang-Hwa;Ryu, Gwang-Yeol;Go, Yun-Yeong;Gwak, Min-Seok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.6
    • /
    • pp.700-707
    • /
    • 1999
  • 본 논문에서는 GIS 관련 연산을 실시간에 효율적으로 처리하기 위한 분산공유메모리 기반 병렬처리 시스템을 제안한다. 본 논문의 분산공유메모리 시스템은 메시지전달 방식의 분산메모리 MIMD 컴퓨터 상에 소프트웨어 기반 분산공유메모리 모듈을 탑재함으로써 구현되었다. 또한 GIS 연산의 기본이 되는 공간 객체를 공유의 기본 단위로 설정하고, GIS 데이타의 특성을 반영하여 읽기전용 공유데이타 타입을 추가하였으며, 네트워크 오버헤드를 줄이기 위하여 복수의 객체를 한번에 읽어오는 bulk access가 가능하도록 하였다. 본 시스템에서는 GIS 데이타의 효율적인 분배를 위하여 부하균등화 기법으로 guided self scheduling을 사용하였다. 실험결과 본 시스템은 네트워크 캐쉬의 효율적인 활용을 통하여 소프트웨어 기반 분산메모리 시스템의 오버헤드에도 불구하고 MPI 기반 메시지전달 방식에 비하여 향상된 성능을 얻을 수 있었다.Abstract In this paper, we propose a distributed shared memory(DSM) based parallel processing system to process GIS related computations efficiently in real time. The system is based on a software DSM module implemented on top of a distributed MIMD computer. In the DSM system, spatial object, which is a fundamental structure to represent GIS data, is used as a basic unit for sharing, and a read-only shared data type is added to reflect the characteristics of GIS data. In addition, a bulk access to multiple shared data is made possible to reduce the network overhead. A guided self scheduling method is devised for efficient load balancing in distributing GIS data to parallel processors. The experimental results show that the DSM system performs better than an MPI based message-passing system through the efficient utilization of network cache in spite of the system's software overhead.

Auto-Tuning of Reference Model Based PID Controller Using Immune Algorithm

  • Kim, Dong-Hwa;Park, Jin-Ill
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.246-254
    • /
    • 2002
  • In this paper auto-tuning scheme of PID controller based on the reference model has been studied for a Process control system by immune algorithm. Up to this time, many sophisticated tuning algorithms have been tried in order to improve the PID controller performance under such difficult conditions. Also, a number of approaches have been proposed to implement mixed control structures that combine a PID controller with fuzzy logic. However, in the actual plant, they are manually tuned through a trial and error procedure, and the derivative action is switched off. Therefore, it is difficult to tune. Since the immune system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (Parallel Distributed Processing) network to complete patterns against the environmental situation. Simulation results reveal that reference model basd tuning by immune network suggested in this paper is an effective approach to search for optimal or near optimal process control.

Implementation Of Asymmetric Communication For Asynchronous Iteration By the MPMD Method On Distributed Memory Systems (분산 메모리 시스템에서의 MPMD 방식의 비동기 반복 알고리즘을 위한 비대칭 전송의 구현)

  • Park Pil-Seong
    • Journal of Internet Computing and Services
    • /
    • v.4 no.5
    • /
    • pp.51-60
    • /
    • 2003
  • Asynchronous iteration is a way to reduce performance degradation of some parallel algorithms due to load imbalance or transmission delay between computing nodes, which requires asymmetric communication between the nodes of different speeds. To implement such asynchronous communication on distributed memory systems, we suggest an MPMD method that creates an additional separate server process on each computing node, and compare it with an SPMD method that creates a single process per node.

  • PDF

Parallel Algorithm of Improved FunkSVD Based on Spark

  • Yue, Xiaochen;Liu, Qicheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1649-1665
    • /
    • 2021
  • In view of the low accuracy of the traditional FunkSVD algorithm, and in order to improve the computational efficiency of the algorithm, this paper proposes a parallel algorithm of improved FunkSVD based on Spark (SP-FD). Using RMSProp algorithm to improve the traditional FunkSVD algorithm. The improved FunkSVD algorithm can not only solve the problem of decreased accuracy caused by iterative oscillations but also alleviate the impact of data sparseness on the accuracy of the algorithm, thereby achieving the effect of improving the accuracy of the algorithm. And using the Spark big data computing framework to realize the parallelization of the improved algorithm, to use RDD for iterative calculation, and to store calculation data in the iterative process in distributed memory to speed up the iteration. The Cartesian product operation in the improved FunkSVD algorithm is divided into blocks to realize parallel calculation, thereby improving the calculation speed of the algorithm. Experiments on three standard data sets in terms of accuracy, execution time, and speedup show that the SP-FD algorithm not only improves the recommendation accuracy, shortens the calculation interval compared to the traditional FunkSVD and several other algorithms but also shows good parallel performance in a cluster environment with multiple nodes. The analysis of experimental results shows that the SP-FD algorithm improves the accuracy and parallel computing capability of the algorithm, which is better than the traditional FunkSVD algorithm.

Causal Replay for Cyclic Debugging of MPI Parallel Programs (MPI 병렬 프로그램의 순환 디버깅을 위한 인과관계 재실행)

  • Hong, Cheol-Eui;Kim, Yeong-Joon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.9
    • /
    • pp.424-433
    • /
    • 2001
  • The cyclic debugging approach often fails for message passing parallel programs because they non-deterministic characteristics due to message race conditions. This paper identifies the MPI events that affect non-deterministic executions, and then converts the concurrent execution to the sequential one that is controlled in order to make it equivalent to a reference execution by keeping their orders of events in two executions identical. This paper also presents an efficient algorithm for the causal distributed breakpoint which is initiated by any sequential breakpoint in one process, and restores each process to the earliest state that reflects all events that happened causally before the sequential breakpoint. So a cyclic debugging approach can be used in debugging MPI parallel programs as like as in debugging sequential programming environments.

  • PDF

Parallel Distributed Implementation of GHT on MPI-based PC Cluster (MPI 기반 PC 클러스터에서 GHT의 병렬 분산 구현)

  • Kim, Yeong-Soo;Kim, Jeong-Sahm;Choi, Heung-Moon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.81-89
    • /
    • 2007
  • This paper presents a parallel distributed implementation of the GHT (generalized Hough transform) for the fast processing on the MPI-based PC cluster. We tried to achieve the higher speedup mainly by alleviating the communication overhead through the pipelined broadcast and accumulator array partition strategy and by time overlapping of the communication and the computation over entire process. Experimental results show that nearly linear speedup is reachable by the proposed method on the MPI-based PC clusters connected through 100Mbps Ethernet switch.

Applying TIPC Protocol for Increasing Network Performance in Hadoop-based Distributed Computing Environment (Hadoop 기반 분산 컴퓨팅 환경에서 네트워크 I/O의 성능개선을 위한 TIPC의 적용과 분석)

  • Yoo, Dae-Hyun;Chung, Sang-Hwa;Kim, Tae-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.5
    • /
    • pp.351-359
    • /
    • 2009
  • Recently with increase of data in the Internet, platform technologies that can process huge data effectively such as Google platform and Hadoop are regarded as worthy of notice. In this kind of platform, there exist network I/O overheads to send task outputs due to the MapReduce operation which is a programming model to support parallel computation in the large cluster system. In this paper, we suggest applying of TIPC (Transparent Inter-Process Communication) protocol for reducing network I/O overheads and increasing network performance in the distributed computing environments. TIPC has a lightweight protocol stack and it spends relatively less CPU time than TCP because of its simple connection establishment and logical addressing. In this paper, we analyze main features of the Hadoop-based distributed computing system, and we build an experimental model which can be used for experiments to compare the performance of various protocols. In the experimental result, TIPC has a higher bandwidth and lower CPU overheads than other protocols.

RDP: A storage-tier-aware Robust Data Placement strategy for Hadoop in a Cloud-based Heterogeneous Environment

  • Muhammad Faseeh Qureshi, Nawab;Shin, Dong Ryeol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4063-4086
    • /
    • 2016
  • Cloud computing is a robust technology, which facilitate to resolve many parallel distributed computing issues in the modern Big Data environment. Hadoop is an ecosystem, which process large data-sets in distributed computing environment. The HDFS is a filesystem of Hadoop, which process data blocks to the cluster nodes. The data block placement has become a bottleneck to overall performance in a Hadoop cluster. The current placement policy assumes that, all Datanodes have equal computing capacity to process data blocks. This computing capacity includes availability of same storage media and same processing performances of a node. As a result, Hadoop cluster performance gets effected with unbalanced workloads, inefficient storage-tier, network traffic congestion and HDFS integrity issues. This paper proposes a storage-tier-aware Robust Data Placement (RDP) scheme, which systematically resolves unbalanced workloads, reduces network congestion to an optimal state, utilizes storage-tier in a useful manner and minimizes the HDFS integrity issues. The experimental results show that the proposed approach reduced unbalanced workload issue to 72%. Moreover, the presented approach resolve storage-tier compatibility problem to 81% by predicting storage for block jobs and improved overall data block placement by 78% through pre-calculated computing capacity allocations and execution of map files over respective Namenode and Datanodes.

A web-based collaborative framework for facilitating decision making on a 3D design developing process

  • Nyamsuren, Purevdorj;Lee, Soo-Hong;Hwang, Hyun-Tae;Kim, Tae-Joo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.148-156
    • /
    • 2015
  • Increased competitive challenges are forcing companies to find better ways to bring their applications to market faster. Distributed development environments can help companies improve their time-to-market by enabling parallel activities. Although, such environments still have their limitations in real-time communication and real-time collaboration during the product development process. This paper describes a web-based collaborative framework which has been developed to support the decision making on a 3D design developing process. The paper describes 3D design file for the discussion that contains all relevant annotations on its surface and their visualization on the user interface for design changing. The framework includes a native CAD data converting module, 3D data based real-time communication module, revision control module for 3D data and some sub-modules such as data storage and data management. We also discuss some raised issues in the project and the steps underway to address them.

Distributed AI Learning-based Proof-of-Work Consensus Algorithm (분산 인공지능 학습 기반 작업증명 합의알고리즘)

  • Won-Boo Chae;Jong-Sou Park
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The proof-of-work consensus algorithm used by most blockchains is causing a massive waste of computing resources in the form of mining. A useful proof-of-work consensus algorithm has been studied to reduce the waste of computing resources in proof-of-work, but there are still resource waste and mining centralization problems when creating blocks. In this paper, the problem of resource waste in block generation was solved by replacing the relatively inefficient computation process for block generation with distributed artificial intelligence model learning. In addition, by providing fair rewards to nodes participating in the learning process, nodes with weak computing power were motivated to participate, and performance similar to the existing centralized AI learning method was maintained. To show the validity of the proposed methodology, we implemented a blockchain network capable of distributed AI learning and experimented with reward distribution through resource verification, and compared the results of the existing centralized learning method and the blockchain distributed AI learning method. In addition, as a future study, the thesis was concluded by suggesting problems and development directions that may occur when expanding the blockchain main network and artificial intelligence model.