최근 IoT 기술의 발달로 외출 중에도 반려동물에 급여하도록 자동 사료급식기가 유통되고 있다. 그러나 자동급식에서 중요한 중량을 측정하는 저울 방식은 쉽게 고장이 나고, 3D카메라 방식은 비용이 든다는 단점이 있으며, 2D카메라 방식은 중량 측정의 정확도가 떨어진다. 특히 사료가 복합된 경우 중량 측정 문제는 더욱 어려워질 수 있다. 따라서 본 연구의 목적은 2D카메라를 사용하면서도 중량을 정확하게 추정할 수 있는 딥러닝 접근법을 제안하는 것이다. 이를 위해 다양한 합성곱 신경망을 이용하였으며, 그중 ResNet101 기반 모델이 3.06 gram의 평균 절대 오차와 3.40%의 평균 절대비 오차를 기록하며 가장 우수한 성능을 보였다. 본 연구의 결과로 사료와 같이 규격화된 물체의 중량을 확보가 용이한 2D 이미지를 통해서만 예측할 필요가 있을 경우 유용한 정보로 활용될 수 있다.
소셜 네트워크는 사용자들의 공통된 관심사, 경험, 그리고 일상 생활들을 함께 공유하기 위해 소셜 네트워크 상 사람들을 서로 연결시켜주는 거대한 커뮤니케이션 플랫폼이다. 소셜 네트워크상의 사용자들은 포스팅, 댓글, 인스턴스 메시지, 게임, 소셜 이벤트 외에도 다양한 애플리케이션을 통해 다른 사용자들과 소통하고 개인 정보 관리하는데 많은 시간을 소비한다. 소셜 네트워크 상의 풍부한 사용자 정보는 추천시스템이 추천 성능을 향상시키기 위해 필요한 큰 잠재력이 되었다. 대부분의 사용자들은 어떤 상품을 구매하기 전 가까운 관계이거나 같은 성향을 가진 사람들의 의견을 반영하여 의사 결정을 하게 된다. 그러므로 소셜 네트워크에서의 사용자 관계는 추천시스템을 위한 사용자 선호도 예측을 효율적으로 높이는데 중요한 요소라 할 수 있다. 일부 연구자들은 소셜 네트워크에서의 사용자와 다른 사용자들 사이의 상호작용 즉, 소셜 관계(social relationship)와 같은 소셜 데이터가 추천시스템에서 추천의 질에 어떠한 영향을 미치는가를 연구하고 있다. 추천시스템은 아마존, 이베이, Last.fm과 같은 큰 규모의 전자상거래 사이트 또한 채택하여 사용되는 시스템으로, 추천시스템을 위한 방법으로는 협업적 여과 방법과 내용 기반 여과 방법이 있다. 협업적 여과 방법은 사용자들의 선호도 학습에 의해 사용자가 아직 평가하지 않은 아이템 중 선호할 수 있는 아이템을 정확하게 제안하기 위한 추천시스템 방법 중 하나이다. 협업적 여과는 사용자들의 데이터에 초점을 맞춘 방법으로 유사한 배경과 선호도를 가지는 사용자들로부터 정보를 수집하여 사용자들의 선호도 예측을 자동으로 발생시킨다. 특히 협업적 여과는 근접한 이웃 사용자들에 의해서 목적 사용자가 선호할 수 있는 아이템을 제시하는 것으로 유사한 이웃 사용자를 찾는 것이 중요하다. 좋은 이웃 사용자 발견은 사용자와 아이템을 고려하는 방법이 일반적이다. 각 사용자는 아이템 즉, 영화, 상품, 책 등에 자신의 선호도를 나타내기 위하여 평가 값을 입력하고, 시스템은 이를 바탕으로 사용자-평가 행렬을 구축한다. 이 사용자-평가 행렬은 목적 사용자와 유사하게 아이템을 평가한 사용자 그룹을 찾기 위한 것으로, 목적 사용자가 아직 평가하지 않은 아이템에 대하여 사용자-평가 매트릭스를 통해 그 평가 값을 예측한다. 현재 이 협업적 여과 방법은 전자상거래와 정보 검색에서 적용되어 개인화 시스템에 효율적으로 사용되고 있다. 하지만 초기 사용자 문제, 데이터 희박성 문제와 확장성 그리고 예측 정확도 향상 등 해결해야 할 과제가 여전히 남아 있다. 이러한 문제들을 해소하기 위해 많은 연구자들은 하이브리드, 신뢰기반, 소셜 네트워크 기반 협업적 여과와 같은 다양한 방법을 제안하였다. 본 논문에서는 전통적인 협업적 여과 방식의 예측 정확도와 추천 성능을 향상시키기 위해 소셜 네트워크에 존재하는 소셜 관계를 이용한 협업적 여과 시스템을 제안한다. 소셜 관계는 소셜 네트워크 서비스 중 하나인 페이스북 사용자들이 남긴 포스팅과 사용자의 소셜 네트워크 친구와 의견 교류 중 남긴 코멘트와 같은 사용자 행동을 기반으로 정의된다. 소셜 관계를 구축하기 위해 소셜 네트워크 사용자의 포스팅과 댓글을 추출하고, 추출된 텍스트에 불용어 및 특수 기호 제거와 스테밍 등 전처리를 수행하였다. 특징 벡터는 TF-IDF를 이용하여 전처리된 텍스트에 나타난 각 단어에 대한 특징 점수를 계산함으로써 구축된다. 본 논문에서 이웃 사용자를 결정하기 위해 사용되는 사용자 간 유사도는 특징 벡터를 이용한 사용자 행동 유사도와 사용자의 영화 평가를 기반으로 한 전통적 방법의 유사도를 결합하여 계산된다. 제안하는 시스템은 목표 사용자와 제안한 방법을 통해 결정된 이웃 사용자 집단을 기반으로 목표 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고 Top-N 아이템을 선별하여 사용자에게 아이템을 추천하게 된다. 본 논문에서 제안하는 방법을 확인하고 평가하기 위하여 IMDB에서 제공하는 영화 정보 기반으로 영화 평가 시스템을 구축하였다. 예측 정확도를 평가하기 위해 MAE 값을 이용하여 제안하는 알고리즘이 얼마나 정확한 추천을 수행하는지에 대한 예측 정확도를 측정하였다. 그리고 정확도, 재현율 및 F1값 등을 활용하여 시스템의 성능을 평가하였으며, 시스템의 추천 품질은 커버리지를 이용하여 평가되었다. 실험 결과로부터 본 논문에서 제안한 시스템이 보다 더 정확하고 좋은 성능으로 사용자에게 아이템을 추천하는 것을 볼 수 있었다. 특히 소셜 네트워크에서 사용자 행동을 기반으로 한 소셜 관계를 이용함으로써 추천 정확도를 6% 향상시킴을 보였다. 또한 벤치마크 알고리즘과의 성능비교 실험을 통해 7% 향상된 추천 성능의 결과를 보여준다. 그러므로 사용자의 행동으로부터 관찰된 소셜 관계를 CF방법과 결합한 제안한 방법이 정확한 추천시스템을 위해 유용하며, 추천시스템의 성능과 품질을 향상시킬 수 있음을 알 수 있다.
최근 정보 유통의 주요 매체인 인터넷 뉴스와 SNS의 매체 간 특성 차이를 주목한 많은 연구가 있었음에도 불구하고, 양 매체의 차이를 정보의 수요 및 공급 관점에서 파악한 연구는 상대적으로 매우 부족하다. 일반적으로 새로운 정보는 언론사의 뉴스 기사를 통해 대중에게 노출되고, 대중은 이러한 기사에 대한 의견 또는 추가정보를 SNS를 통해 공유함으로써 해당 정보를 수용함과 동시에 확산시킨다. 이러한 측면에서 언론사가 뉴스를 제공하는 행위를 정보의 공급으로 파악할 수 있으며, 대중은 SNS를 통해 이에 대한 관심을 능동적으로 나타냄으로써 해당 정보에 대한 소비 수요를 표출하는 것으로 이해할 수 있다. 이는 상품 및 서비스의 가격이 수요와 공급의 관계에 의해 결정되는 것과 유사한 원리로, 정보의 가치를 정보 수요와 정보 공급의 관계에 기반을 두어 측정할 수 있음을 시사한다. 본 연구에서는 정보 공급의 대표 매체로 인터넷 뉴스 기사를, 정보 수요를 나타내는 대표 매체로 트위터를 선정하고, 특정 이슈에 대한 뉴스의 정보로서의 가치를 이와 관련된 트위터의 양으로 평가하는 뉴스가치지수(NVI, News Value Index)를 고안하여 제시한다. 구체적으로 제안 방법론은 각 이슈별로 NVI를 도출하고 이를 통해 시간의 흐름에 따른 정보 가치의 변화를 시각화하여 나타낸다. 또한 본 연구에서는 제안 방법론의 실무 적용 가능성을 평가하기 위해 인터넷 뉴스 387,018건과 트윗 31,674,795건에 대한 실험을 수행하였다. 그 결과 대부분의 이슈가 전체 정보 시장의 평균 가치에 수렴하는 형태로 변화함을 알 수 있었으며, 꾸준히 평균 이상의 가치를 가지며 정보 시장을 장악하는 등 특이한 양상을 보이는 흥미로운 이슈도 존재함을 파악할 수 있었다.
최근 인터넷 기술의 발전과 함께 스마트 기기가 대중화됨에 따라 방대한 양의 텍스트 데이터가 쏟아져 나오고 있으며, 이러한 텍스트 데이터는 뉴스, 블로그, 소셜미디어 등 다양한 미디어 매체를 통해 생산 및 유통되고 있다. 이처럼 손쉽게 방대한 양의 정보를 획득할 수 있게 됨에 따라 보다 효율적으로 문서를 관리하기 위한 문서 분류의 필요성이 급증하였다. 문서 분류는 텍스트 문서를 둘 이상의 카테고리 혹은 클래스로 정의하여 분류하는 것을 의미하며, K-근접 이웃(K-Nearest Neighbor), 나이브 베이지안 알고리즘(Naïve Bayes Algorithm), SVM(Support Vector Machine), 의사결정나무(Decision Tree), 인공신경망(Artificial Neural Network) 등 다양한 기술들이 문서 분류에 활용되고 있다. 특히, 문서 분류는 문맥에 사용된 단어 및 문서 분류를 위해 추출된 형질에 따라 분류 모델의 성능이 달라질 뿐만 아니라, 문서 분류기 구축에 사용된 학습데이터의 질에 따라 문서 분류의 성능이 크게 좌우된다. 하지만 현실세계에서 사용되는 대부분의 데이터는 많은 노이즈(Noise)를 포함하고 있으며, 이러한 데이터의 학습을 통해 생성된 분류 모형은 노이즈의 정도에 따라 정확도 측면의 성능이 영향을 받게 된다. 이에 본 연구에서는 노이즈를 인위적으로 삽입하여 문서 분류기의 견고성을 강화하고 이를 통해 분류의 정확도를 향상시킬 수 있는 방안을 제안하고자 한다. 즉, 분류의 대상이 되는 원 문서와 전혀 다른 특징을 갖는 이질적인 데이터소스로부터 추출한 형질을 원 문서에 일종의 노이즈의 형태로 삽입하여 이질성 학습을 수행하고, 도출된 분류 규칙 중 문서 분류기의 정확도 향상에 기여하는 분류 규칙만을 추출하여 적용하는 방식의 규칙 선별 기반의 앙상블 준지도학습을 제안함으로써 문서 분류의 성능을 향상시키고자 한다.
최근 빅데이터 분석은 기업과 전문가뿐만 아니라 개인이나 비전문가들도 큰 관심을 갖는 분야로 발전하였다. 그에 따라 현재 공개된 데이터 또는 직접 수집한 이터를 분석하여 마케팅, 사회적 문제 해결 등에 활용되고 있다. 국내에서도 다양한 기업들과 개인이 빅데이터 분석에 도전하고 있지만 빅데이터 공개의 제한과 수집의 어려움으로 분석 초기 단계에서부터 어려움을 겪고 있다. 본 논문에서는 빅데이터 공유를 방해하는 개인정보, 빅트래픽 등의 요소들에 대한 기존 연구와 사례들을 살펴보고 정책기반의 해결책이 아닌 시스템을 통해서 빅데이터 공유 제한 문제를 해결 할 수 있는 클라이언트-서버 모델을 이용해 빅데이터를 공개 및 사용 할 때 발생하는 문제점들을 해소하고 공유와 분석 활성화를 도울 수 있는 방안에 대해 기술한다. 클라이언트-서버 모델은 SPARK를 활용해 빠른 분석과 사용자 요청을 처리하며 Server Agent와 Client Agent로 구분해 데이터 제공자가 데이터를 공개할 때 서버 측의 프로세스와 데이터 사용자가 데이터를 사용하기 위한 클라이언트 측의 프로세스로 구분하여 설명한다. 특히, 빅데이터 공유, 분산 빅데이터 처리, 빅트래픽 문제에 초점을 맞추어 클라이언트-서버 모델의 세부 모듈을 구성하고 각 모듈의 설계 방법에 대해 제시하고자 한다. 클라이언트-서버 모델을 통해서 빅데이터 공유문제를 해결하고 자유로운 공유 환경을 구성하여 안전하게 빅데이터를 공개하고 쉽게 빅데이터를 찾는 이상적인 공유 서비스를 제공할 수 있다.
현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.
최근 가용한 텍스트 데이터 자원이 증가함에 따라 방대한 텍스트 분석을 통해 새로운 가치를 창출하고자 하는 수요가 증가하고 있다. 특히 뉴스, 민원, 블로그, SNS 등을 통해 유통되는 글로부터 다양한 이슈를 발굴해내고 이들 이슈의 추이를 분석하는 이슈 트래킹에 대한 연구가 활발하게 이루어지고 있다. 전통적인 이슈 트래킹은 토픽 모델링을 통해 오랜 기간에 걸쳐 지속된 주요 이슈를 발굴한 후, 각 이슈를 구성하는 문서 수의 세부 기간별 분포를 분석하는 방식으로 이루어진다. 하지만 전통적 이슈 트래킹은 각 이슈를 구성하는 내용이 전체 기간에 걸쳐 변화 없이 유지된다는 가정 하에 수행되기 때문에, 다양한 세부 이슈가 서로 영향을 주며 생성, 병합, 분화, 소멸하는 이슈의 동적 변이과정을 나타내지 못한다. 또한 전체 기간에 걸쳐 지속적으로 출현한 키워드만이 이슈 키워드로 도출되기 때문에, 핵실험, 이산가족 등 세부 기간의 분석에서는 매우 상이한 맥락으로 파악되는 구체적인 이슈가 오랜 기간의 분석에서는 북한이라는 큰 이슈에 함몰되어 가려지는 현상이 발생할 수 있다. 본 연구에서는 이러한 한계를 극복하기 위해 각 세부 기간의 문서에 대한 독립적인 분석을 통해 세부 기간별 주요 이슈를 도출한 후, 각 이슈의 유사도에 기반하여 이슈 흐름도를 도출하고자 한다. 또한 각 문서의 카테고리 정보를 활용하여 카테고리간의 이슈 전이 패턴을 분석하고자 한다. 본 논문에서는 총 53,739건의 신문 기사에 제안 방법론을 적용한 실험을 수행하였으며, 이를 통해 전통적인 이슈 트래킹을 통해 발굴한 주요 이슈의 세부 기간별 구성 내용을 살펴볼 수 있을 뿐 아니라, 특정 이슈의 선행 이슈와 후행 이슈를 파악할 수 있음을 확인하였다. 또한 카테고리간 분석을 통해 단방향 전이와 양방향 전이의 흥미로운 패턴을 발견하였다.
Consumers of e-learning market differ from those of other markets in that they are replaced in a specific time scale. For example, e-learning contents aimed at highschool senior students cannot be consumed by a specific consumer over the designated period of time. Hence e-learning service providers need to attract new groups of students every year. Due to lack of information on products designed for continuously emerging consumers, the consumers face difficulties in making rational decisions in a short time period. Increased uncertainty of product purchase leads customers to herding behaviors to obtain information of the product from others and imitate them. Taking into consideration of these features of e-learning market, this study will focus on the online herding behavior in purchasing e-learning contents. There is no definite concept for e-learning. However, it is being discussed in a wide range of perspectives from educational engineering to management to e-business etc. Based upon the existing studies, we identify two main view-points regarding e-learning. The first defines e-learning as a concept that includes existing terminologies, such as CBT (Computer Based Training), WBT (Web Based Training), and IBT (Internet Based Training). In this view, e-learning utilizes IT in order to support professors and a part of or entire education systems. In the second perspective, e-learning is defined as the usage of Internet technology to deliver diverse intelligence and achievement enhancing solutions. In other words, only the educations that are done through the Internet and network can be classified as e-learning. We take the second definition of e-learning for our working definition. The main goal of this study is to investigate what factors affect consumer intention to purchase e-learning contents and to identify the differential impact of the factors between consumers with purchase experience and those without the experience. To accomplish the goal of this study, it focuses on herding behavior and perceived usefulness as antecedents to behavioral intention. The proposed research model in the study extends the Technology Acceptance Model by adding herding behavior and usability to take into account the unique characteristics of e-learning content market and e-learning systems use, respectively. The current study also includes consumer experience with e-learning content purchase because the previous experience is believed to affect purchasing intention when consumers buy experience goods or services. Previous studies on e-learning did not consider the characteristics of e-learning contents market and the differential impact of consumer experience on the relationship between the antecedents and behavioral intention, which is the target of this study. This study employs a survey method to empirically test the proposed research model. A survey questionnaire was developed and distributed to 629 informants. 528 responses were collected, which consist of potential customer group (n = 133) and experienced customer group (n = 395). The data were analyzed using PLS method, a structural equation modeling method. Overall, both herding behavior and perceived usefulness influence consumer intention to purchase e-learning contents. In detail, in the case of potential customer group, herding behavior has stronger effect on purchase intention than does perceived usefulness. However, in the case of shopping-experienced customer group, perceived usefulness has stronger effect than does herding behavior. In sum, the results of the analysis show that with regard to purchasing experience, perceived usefulness and herding behavior had differential effects upon the purchase of e-learning contents. As a follow-up analysis, the interaction effects of the number of purchase transaction and herding behavior/perceived usefulness on purchase intention were investigated. The results show that there are no interaction effects. This study contributes to the literature in a couple of ways. From a theoretical perspective, this study examined and showed evidence that the characteristics of e-learning market such as continuous renewal of consumers and thus high uncertainty and individual experiences are important factors to be considered when the purchase intention of e-learning content is studied. This study can be used as a basis for future studies on e-learning success. From a practical perspective, this study provides several important implications on what types of marketing strategies e-learning companies need to build. The bottom lines of these strategies include target group attraction, word-of-mouth management, enhancement of web site usability quality, etc. The limitations of this study are also discussed for future studies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.