Proceedings of the Korea Multimedia Society Conference
/
2001.11a
/
pp.896-899
/
2001
본 논문에서는 외판원 문제를 분산 시스템 환경에서, 다중 에이전트를 이용해 수법시간을 단축시키고, 더욱 우수한 근접해를 구할 수 있는 분산 유전 알고리즘을 개발하였다. 다중 후보해를 이용한 분산 유전 알고리즘을 수행할 때, 고려해야 할 중요한 요소는 후보해들 간의 개체들을 어떤 노드의 후보해 개체와 교환할 것인가와 어떤 개체들을 선택해서, 얼마만큼의 개체를 이동시킨 것인가가 중요하게 고려독어야 한다. 따라서 본 논문에서는 교환해야 할 개체의 크기를 동적으로 윈도우 크기를 변경하면서 교환하는 방법을 개발하였고, 교환할 개체들의 위치를 결정하는 새로운 유전 이동 정책 2가지 방법을 개발하고 실험하였다.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.470-472
/
1998
본 논문에서는 노이즈와 블러링에 의해 오염된 영상의 비 지도 분할 방법을 제안한다. 본 논문에서는 Markov random field (MRF) model을 사용하는데, 이것은 오염된 여상에 처리하는데 효율적이다. MRF는 연산적으로 복잡하기 때문에 이를 해결하기 위해서 효율적이라는 것과 교통량 측정과 같은 영상 처리에 응용 가능함을 보여준다.
Proceedings of the Korea Multimedia Society Conference
/
2004.05a
/
pp.851-854
/
2004
분산 유전 알고리즘은 외판원 문제를 해결하는데 효율적이고 적용하기 쉬운 알고리즘이다. 그러나 다중 후보해를 가진 분산 유전 알고리즘을 수행할 때, 효율성과 정확성에 영향을 주는 많은 요소들이 고려되어야 한다. 후보해의 크기를 얼마로 할 것인지, 이주의 비율 및 횟수는 어떻게 할 것인지와 그리고 어떤 개체들을 선택해서, 어떤 후보해 개체와 교환할 것인가가 중요하게 고려되어야 한다. 따라서 본 논문에서는 이주해야 할 개체의 크기를 동적으로 변경하면서 교환하는 방법과 또한 개체들이 이주되어야 할 위치를 결정하는 이주 정책을 개발하고 실험하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.5
/
pp.712-717
/
2008
In swarm robot systems, each robot must act by itself according to the its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, reinforcement learning method with SVM based on structural risk minimization and distributed genetic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. By distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning that basis of SVM is adopted in this paper.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.2
/
pp.279-284
/
2009
In swarm robot systems, each robot must behaves by itself according to the its states and environments, and if necessary, must cooperates with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, reinforcement learning method using many SVM based on structural risk minimization and distributed genetic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. By distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning that basis of Cascade SVM is adopted in this paper.
Kim, Do Jin;Jang, Dae Won;Seoh, Byung Ha;Kim, Hung Soo
Journal of Wetlands Research
/
v.7
no.4
/
pp.97-107
/
2005
As the distributed model is developed and widely used, the accuracy of a rainfall measurement and more dense rainfall observation network are required for the reflection of various spatial properties. However, in reality, it is not easy to get the accurate data from dense network. Generally, we could not have the proper rainfall gages in space and even we have proper network for rainfall gages it is not easy to reflect the variations of rainfall in space and time. Often, we do also have missing rainfall data at the rainfall gage stations due to various reasons. We estimate the distribution of mean areal rainfall data from the point rainfalls. So, in the aspect of continuous rainfall property in time, we should fill the missing rainfall data then we can represent the spatial distribution of rainfall data. This study uses the Fuzzy-Genetic algorithm as a interpolation method for filling the missing rainfall data. We compare the Fuzzy-Genetic algorithm with arithmetic average method, inverse distance method, normal ratio method, and ratio of distance and elevation method which are widely used previously. As the results, the previous methods showed the accuracy of 70 to 80 % but the Fuzzy-Genetic algorithm showed that of 90 %. Especially, from the sensitivity analysis, we suggest the values of power in the equation for filling the missing data according to the distance and elevation.
Journal of the Korea Society of Computer and Information
/
v.16
no.3
/
pp.45-51
/
2011
This paper proposes a method to accelerate the evolution speed of individuals through hybrid reproduction of monogenesis and gamogenesis. Monogenesis as a reproduction method that bacteria or monad without sexual distinction divide into two individuals has an advantage for local search and gamogenesis as a reproduction method that individuals with sexual distinction mate and breed the offsprings has an advantages for keeping the diversity of individuals. These properties can be properly used for improvement of evolution speed of individuals in genetic algorithms. In this paper, we made relatively good individuals among selected parents to do monogenesis for local search and forced relatively bad individuals among selected parents to do gamogenesis for global search by increasing the diversity of chromosomes. The mutation probability for monogenesis was set to a lower value than that of original genetic algorithm for local search and the mutation probability for gamogenesis was set to a higher value than that of original genetic algorithm for global search. Experimental results with four function optimization problems showed that the performances of three functions were very good, but the performances of fourth function with distributed global optima were not good. This was because distributed global optima prevented individuals from steady evolution.
In this paper, a method is presented to identify the physical and modal parameters of multistory shear building based on substructural technique using block pulse generalized operational matrix and genetic algorithm. The substructure approach divides a complete structure into several substructures in order to significantly reduce the number of unknown parameters for each substructure so that identification processes can be independently conducted on each substructure. Block pulse functions are set of orthogonal functions that have been used in recent years as useful tools in signal characterization. Assuming that the input-outputs data of the system are known, their original BP coefficients can be calculated using numerical method. By using generalized BP operational matrices, substructural dynamic vibration equations can be converted into algebraic equations and based on BP coefficient for each story can be estimated. A cost function can be defined for each story based on original and estimated BP coefficients and physical parameters such as mass, stiffness and damping can be obtained by minimizing cost functions with genetic algorithm. Then, the modal parameters can be computed based on physical parameters. This method does not require that all floors are equipped with sensor simultaneously. To prove the validity, numerical simulation of a shear building excited by two different normally distributed random signals is presented. To evaluate the noise effect, measurement random white noise is added to the noise-free structural responses. The results reveal the proposed method can be beneficial in structural identification with less computational expenses and high accuracy.
Journal of the Korean Data and Information Science Society
/
v.26
no.6
/
pp.1479-1494
/
2015
Since the Markowitz's mean-variance framework for portfolio analysis, the topic of portfolio optimization has been an important topic in finance. Traditional approaches focus on maximizing the expected return of the portfolio while minimizing its variance, assuming that risky asset returns are normally distributed. The normality assumption however has widely been criticized as actual stock price distributions exhibit much heavier tails as well as asymmetry. To this extent, in this paper we employ the genetic algorithm to find the optimal portfolio under the Value-at-Risk (VaR) constraint, where the tail of risky assets are modeled with the generalized Pareto distribution (GPD), the standard distribution for exceedances in extreme value theory. An empirical study using Korean stock prices shows that the performance of the proposed method is efficient and better than alternative methods.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.1
/
pp.1-20
/
2018
Service composition in the Inter-Cloud raises new challenges that are caused by the different Quality of Service (QoS) requirements of the users, which are served by different geo-distributed Cloud providers. This paper aims to explore how to select and compose such services while considering how to reach high efficiency on cost and response time, low network latency, and high reliability across multiple Cloud providers. A new hybrid multi-objective evolutionary algorithm to perform the above task called LS-NSGA-II-DE is proposed, in which the differential evolution (DE) algorithm uses the adaptive mutation operator and crossover operator to replace the those of the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to get the better convergence and diversity. At the same time, a Local Search (LS) method is performed for the Non-dominated solution set F{1} in each generation to improve the distribution of the F{1}. The simulation results show that our proposed algorithm performs well in terms of the solution distribution and convergence, and in addition, the optimality ability and scalability are better compared with those of the other algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.