• Title/Summary/Keyword: Distributed Generation System

Search Result 677, Processing Time 0.034 seconds

A Feasibility Design of PEMFC Parallel Operation for a Fuel Cell Generation System

  • Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.408-421
    • /
    • 2008
  • In this paper, the parallel operation for a FC generation system is introduced and designed in order to increase the capacity for the distributed generation of a proton exchange membrane fuel cell (PEMFC) system. The equipment is the type that is used by parallel operated PEMFC generation systems which have two PEMFC systems, two dc/dc boost converters with shared dc link, and a grid-connected dc/ac inverter for embedded generation. The system requirement for the purpose of parallel operated generation using PEMFC system is also described. Aspects related to the mechanical (MBOP) and electrical (EBOP) component, size, and system complexity of the distributed generation system, it is explained in order to design an optimal distributed generation system using PEMFC. The optimal controller design for the parallel operation of the converter is suggested and informative simulations and experimental results are provided.

Integrated Voltage/Var control based on Distributed Load Modeling with Distributed Generation in Distribution System (분산전원이 설치 된 배전 계통의 분포부하를 이용한 IVVC알고리즘)

  • Kim, Young-In;Lim, Il-Hyung;Choe, Myeon-Song;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.95_96
    • /
    • 2009
  • In this paper, a new algorithm of Integrated Volt/Var Control (IVVC) is proposed using Volt/Var control for the Distribution Automation System (DAS) based on the modeling of the distributed load and the distributed current. In the proposed, the load flow based on the modeling of the distributed load with Distributed Generation and the distributed current are estimated from constants of four terminals using the measurement of the current and power factor from a Feeder Remote Terminal Unit (FRTU). For Integrated Volt/Var Control (IVVC), the gradient method is applied to find optimal solution for tap and capacity control of OLTC (On-Load Tap Changers), SVR (Step Voltage Regulator), and SC (Shunt Condenser). What is more Volt/Var control method is proposed using moving the tie switch as well as IVVC algorithm using power utility control. In the case studies, the estimation and simulation network have been testified in Matlab Simulink.

  • PDF

High Efficiency Gas Turbine-Fuel Cell Hybrid Power Generation System (가스터빈-연료전지 혼합형 고효율 발전시스템)

  • Lee, Jin-Kun;Yang, Soo-Seok;Sohn, Jeong-L;Song, Rak-Hyun;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.347-353
    • /
    • 2001
  • A combined cycle, 'HYBRID', is emerging as a new power generation technology that is particularly suitable for the distributed power generation system, with high energy efficiency and low pollutant emission. Currently micro gas turbines and fuel cells are attracting a lot of attention to meet the future needs in the distributed power generation market. This hybrid system may have every advantages of both systems because a gas turbine is synergistically combined with a fuel cell into a unique combined cycle. The hybrid system is believed to become a leading runner in the distributed power generation market. This paper introduces a current plan associated with the development of the hybrid system which consists of a micro gas turbine and a solid-oxide fuel cell(SOFC).

  • PDF

Reliability Evaluation of Distributed Generation and Distribution System Using Load Duration Curve (Load Duration Curve를 이용한 분산전원과 배전계통의 신뢰도 산출)

  • Bae, In-Su;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.11
    • /
    • pp.518-524
    • /
    • 2005
  • This paper presents an analytical method for the reliability evaluation of distribution system, including the distributed generations. Unlike the large sized generations of transmission system, the distributed generations have complexities in analyzing and determining the operation. In the process of evaluate reliability, it can be shown that the analytical method is simpler than the Monte-Carlo simulation and the method using Load Duration Curve model is more accurate than that using peak load model. The modeling of distributed generation to analysis distribution system reliability using LDC is proposed in this Paper, and is compared with the MCS method as a result of case studies.

A Study on the Maximum Capacity Rate of Distributed Generation Considering Power System Transient Stability (분산형전원 투입시 전력계통의 과도안정도 유지 한계용량 산정)

  • Kim, Yong-Ha;Lim, Hyun-Sung;Jung, Hyun-Sung;Back, Bum-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.718-724
    • /
    • 2009
  • Recently, Increase of energy consumption is continued accordingly because economy is constant growth. so we need long term of energy supply stability and develop new energy source. The effort of environmental improvement is necessary and our country has to educe conservatory gas in these situation, our energy policy is summarized that minimizes energy consumption and uses kinds of energy source. This paper studied some effort of stability that distributed generation put in electric system through line fault, sudden load change. And then this paper calculated penetrated level of distributed generation in system transient stability.

Distributed Energy System Connection Limit Capacity Increase Technology Using System Flexible Resources (계통유연자원을 활용한 분산에너지 계통접속 한계용량 증대 기술)

  • Jeong Min Park
    • Journal of Integrative Natural Science
    • /
    • v.16 no.4
    • /
    • pp.139-145
    • /
    • 2023
  • Due to changes in the distribution system and increased demand for renewable energy, interest in technology to increase the limit capacity of distributed energy grid connection using grid flexible resources is also increasing. Recently, the distribution system system is changing due to the increase in distributed power from renewable energy, and as a result, problems with the limited capacity of the distribution system, such as waiting for renewable energy to connect and increased overload, are occurring. According to the power generation facility status report provided by the Korea Power Exchange, of the total power generation capacity of 134,020 MW as of 2021, power generation capacity through new and renewable energy facilities is 24,855 MW, accounting for approximately 19%, and among them, power generation through solar power accounts for a total portion of the total. It was analyzed that the proportion of solar power generation facilities was high, accounting for 75%. In the future, the proportion of new and renewable energy power generation facilities is expected to increase, and accordingly, an efficient operation plan for the distribution system is needed. Advanced country-type NWAs that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power in order to improve distribution network use efficiency without expanding distribution facilities due to the expansion of renewable energy. An integrated operating system is needed. In this study, in order to improve the efficiency of distribution network use without expanding distribution facilities due to the expansion of renewable energy, we developed a method that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power. We want to develop an integrated operation system for NWAs similar to that of advanced countries.

Value-based Distributed Generation Placements for Reliability Criteria Improvement

  • Heidari, Morteza;Banejad, Mahdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.223-229
    • /
    • 2013
  • Restructuring and recent developments in the power system and problems arising from construction and maintenance of large power plants, increasing amount of interest in distributed generation (DG) source. Distributed generation units due to specifications, technology and location network connectivity can improve system and load point reliability indices. In this paper, the allocation and sizing of DG in distribution networks are determined using optimization. The objective function of the proposed method is to improve customer-based reliability indices at lowest cost. The placement and size of DGs are optimized using a Genetic Algorithm (GA). To evaluate the proposed algorithm, 34-bus IEEE test system, is used. The results illustrate efficiency of the proposed method.

Development of Monitor Positioning Algorithm considering Power System Topology and Distributed Generation (분산전원과 토폴로지를 고려한 배전계통에서의 전기품질 모니터 위치 선정 기법)

  • Moon, Dae-Seong;Kim, Yun-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1744-1751
    • /
    • 2008
  • This paper presents a monitor positioning algorithm to identify the power quality event source in the distribution system with distributed generations. This algorithm determines the appropriate number of monitors and their locations considering power system topology together with distributed generation. This paper summarizes the guidelines of monitor positioning into five principles and defines the weighting factors according to the principles. To evaluate the adequacy of monitor positioning results, ambiguity indices considering monitor location and system topology are proposed. The optimal number and locations of monitors are determined from optimization routine using the weighting factors and the monitor positioning results are evaluated in terms of ambiguity indices. The algorithm is applied to IEEE 13 bus test feeder and suggests the optimal number and locations of power quality monitors. The proposed approach can realize the expert's knowledge on monitor positioning into a sophisticated automatic computing algorithm.

The Study for Allowable Capacity of New Distributed Generation for Composite Distribution System Interconnected Distributed Generation (분산전원이 연계된 복합배전개통에 신규분산전원연계시 신규분산전원 도입량에 관한 연구)

  • Jung, Seung-Bock;Kim, Jae-Chul;Moon, Jong-Fil;Choi, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.277-279
    • /
    • 2002
  • Recently, power requirement has been increasing. But the large generation unit is hardly installed because of economic and environment problem. Therefore, the concern for DG(distributed generation) is growing. Present, allowable interconnection capacity of DG for composite distributed generation is studied. In this paper, it is studied that the new interconnection capacity of DG for composite distribution system interconnected DG. We study new allowable interconnection capacity by power factor and placement. We study SERV(sending end reference voltage) variation and allowable interconnection capacity interconnected new DG.

  • PDF

Dynamic model and simulation of microturbine generation system for islanding mode operation (마이크로터빈발전시스템 독립운전을 위한 동적 모델링 및 시뮬레이션)

  • Hong, Won-Pyo;Cho, Jea-Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.453-457
    • /
    • 2009
  • Distributed Generation (DG) is predicted to play a important role in electric power system in the near future. insertion of DG system into existing distribution network has great impact on real-time system operation and planning. It is widely accepted that micro turbine generation (MTG) systems are currently attracting lot of attention to meet customers need in the distributed power generation market. In order to investigate the performance of MT generation systems, their efficient modeling is required. This paper presents the modeling and simulation of a MT generation system suitable for isolated operation. The system comprises of a Permanent magnet synchronous generator driven by a MT. A brief description of the overall system is given, and mathematical models for the MT and permanent magnet synchronous generator are presented. Also, the use of power electronics in conditioning the power output of the generating system is demonstrated. Simulation studies with MATLAB/Simulink have been carried out in islanding operation mode of a DG system.

  • PDF