• Title/Summary/Keyword: Distributed Fusion

Search Result 136, Processing Time 0.032 seconds

A novel approach to design of local quantizers for distributed estimation

  • Kim, Yoon Hak
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.558-564
    • /
    • 2018
  • In distributed estimation where each node can collect only partial information on the parameter of interest without communication between nodes and quantize it before transmission to a fusion node which conducts estimation of the parameter, we consider a novel quantization technique employed at local nodes. It should be noted that the performance can be greatly improved if each node can transmit its measurement to one designated node (namely, head node) which can quantize its estimate using the total rate available in the system. For this case, the best strategy at the head node would be simply to partition the parameter space using the generalized Lloyd algorithm, producing the global codewords, one of which is closest to the estimate is transmitted to a fusion node. In this paper, we propose an iterative design algorithm that seeks to efficiently assign the codewords into each of quantization partitions at nodes so as to achieve the performance close to that of the system with the head node. We show through extensive experiments that the proposed algorithm offers a performance improvement in rate-distortion perspective as compared with previous novel techniques.

다중센서자료 시뮬레이터 설계 및 자료융합 알고리듬 개발 (Design of a Multi-Sensor Data Simulator and Development of Data Fusion Algorithm)

  • 이용재;이자성;고선준;송종화
    • 한국항공우주학회지
    • /
    • 제34권5호
    • /
    • pp.93-100
    • /
    • 2006
  • 본 논문에서는 레이더와 원격측정시스템으로부터 수신되는 다중센서자료를 모사하는 시뮬레이터 설계와 이들 자료를 융합하기 위한 알고리듬 개발에 대하여 소개한다. 설계된 데이터 시뮬레이터는 실제 센서 시스템으로부터 얻게 되는 시간의 비동기, 통신지연, 다중 갱신주기들을 갖는 모의센서 자료를 생성하며 실제적인 센서 모델을 이용하여 측정 잡음을 생성한다. 융합알고리듬은 센서 바이어스 상태를 고려한 PVA모델을 기초로 21차 분산형 칼만 필터로 설계되었고, 센서의 이상이나 정상적이 아닌 측정치를 검출하기 위한 로직도 포함되었다. 설계된 알고리듬을 시뮬레이터에서 생성한 모의 자료 및 실제 자료를 적용하여 검증하였다.

협동교전능력을 위한 자료융합 구조와 비선형 통계적 트랙 융합 기법 (Structure of Data Fusion and Nonlinear Statistical Track Data Fusion in Cooperative Engagement Capability)

  • 정효영;변재욱;이새움;김기성;김기선
    • 한국통신학회논문지
    • /
    • 제39C권1호
    • /
    • pp.17-27
    • /
    • 2014
  • 협동교전능력과 네트워크 중심의 교전에 대한 관심과 더불어 분산형 추적 시스템에 대한 연구는 중요하다. 이러한 분산형 추적 시스템 연구에 있어서 네트워크의 거대화에 의해 비선형 시스템에서의 추적 필터와 자료융합기술 개발이 불가피하다. 따라서 본 논문에서는 협동교전능력 응용을 위해 측지좌표계 기반의 분산형 추적 시스템에 적합한 트랙 융합구조에서 비선형 시스템 환경 하에 운용할 수 있는 비선형 자료융합 기법의 문제를 정립하고 그에 적용 가능한 기법들을 소개하고 성능을 비교 분석한다. 비선형 시스템에서는 최적의 트랙 융합 기법을 구현하는데 있어서 상호 공분산을 구할 수 없다는 것이 가장 큰 문제점이다. 이와 같은 문제점을 해결하기 위해서 크게 간소화 기법과 근사화 기법의 두 가지 접근법이 있다. 간소화 기법에서는 sample mean과 Millman formula의 두 가지 추정치 융합 기법을 유도할 수 있고, 근사화 기법에서는 해석적 선형화 기법과 통계적 선형화 기법의 두 가지 추정치 융합 기법을 유도할 수 있다. 소개된 네 가지 융합 기법을 모의 실험한 결과 각 플랫폼의 추정치 공분산 정보만을 이용하여 필터의 매 단계에서 최적의 플랫폼을 선택할 수 있는 Millman formula 추정치 융합 기법과 적은 복잡도로 보다 정확히 플랫폼들의 상관 공분산을 근사화 할 수 있는 BCS 융합기법이 효율적임을 확인할 수 있다.

A Noisy Infrared and Visible Light Image Fusion Algorithm

  • Shen, Yu;Xiang, Keyun;Chen, Xiaopeng;Liu, Cheng
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.1004-1019
    • /
    • 2021
  • To solve the problems of the low image contrast, fuzzy edge details and edge details missing in noisy image fusion, this study proposes a noisy infrared and visible light image fusion algorithm based on non-subsample contourlet transform (NSCT) and an improved bilateral filter, which uses NSCT to decompose an image into a low-frequency component and high-frequency component. High-frequency noise and edge information are mainly distributed in the high-frequency component, and the improved bilateral filtering method is used to process the high-frequency component of two images, filtering the noise of the images and calculating the image detail of the infrared image's high-frequency component. It can extract the edge details of the infrared image and visible image as much as possible by superimposing the high-frequency component of infrared image and visible image. At the same time, edge information is enhanced and the visual effect is clearer. For the fusion rule of low-frequency coefficient, the local area standard variance coefficient method is adopted. At last, we decompose the high- and low-frequency coefficient to obtain the fusion image according to the inverse transformation of NSCT. The fusion results show that the edge, contour, texture and other details are maintained and enhanced while the noise is filtered, and the fusion image with a clear edge is obtained. The algorithm could better filter noise and obtain clear fused images in noisy infrared and visible light image fusion.

Diagnosis and recovering on spatially distributed acceleration using consensus data fusion

  • Lu, Wei;Teng, Jun;Zhu, Yanhuang
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.271-290
    • /
    • 2013
  • The acceleration information is significant for the structural health monitoring, which is the basic measurement to identify structural dynamic characteristics and structural vibration. The efficiency of the accelerometer is subsequently important for the structural health monitoring. In this paper, the distance measure matrix and the support level matrix are constructed firstly and the synthesized support level and the fusion method are given subsequently. Furthermore, the synthesized support level can be served as the determination for diagnosis on accelerometers, while the consensus data fusion method can be used to recover the acceleration information in frequency domain. The acceleration acquisition measurements from the accelerometers located on the real structure National Aquatics Center are used to be the basic simulation data here. By calculating two groups of accelerometers, the validation and stability of diagnosis and recovering on acceleration based on the data fusion are proofed in the paper.

Optimal Strategies for Cooperative Spectrum Sensing in Multiple Cross-over Cognitive Radio Networks

  • Hu, Hang;Xu, Youyun;Liu, Zhiwen;Li, Ning;Zhang, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권12호
    • /
    • pp.3061-3080
    • /
    • 2012
  • To improve the sensing performance, cooperation among secondary users can be utilized to collect space diversity. In this paper, we focus on the optimization of cooperative spectrum sensing in which multiple cognitive users efficiently cooperate to achieve superior detection accuracy with minimum sensing error probability in multiple cross-over cognitive radio networks. The analysis focuses on two fusion strategies: soft information fusion and hard information fusion. Under soft information fusion, the optimal threshold of the energy detector is derived in both noncooperative single-user and cooperative multiuser sensing scenarios. Under hard information fusion, the optimal randomized rule and the optimal decision threshold are derived according to the rule of minimum sensing error (MSE). MSE rule shows better performance on improving the final false alarm and detection probability simultaneously. By simulations, our proposed strategy optimizes the sensing performance for each cognitive user which is randomly distributed in the multiple cross-over cognitive radio networks.

분산제어명령 기반의 비용함수 최소화를 이용한 장애물회피와 주행기법 (Obstacle Avoidance and Planning using Optimization of Cost Fuction based Distributed Control Command)

  • 배동석;진태석
    • 한국산업융합학회 논문집
    • /
    • 제21권3호
    • /
    • pp.125-131
    • /
    • 2018
  • In this paper, we propose a homogeneous multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments with moving obstacles using multi-ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as real experiments with mobile robot, AmigoBot. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Short-range Visible Light Positioning Based on Angle of Arrival for Smart Indoor Service

  • Lee, Yong Up;Park, Seop Hyeong
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1363-1370
    • /
    • 2018
  • In visible light (VL) positioning based on angle of arrival (AOA) estimation for smart indoor service, the AOA parameters obtained at the receiver has sometimes a random and distributed angle form instead of a point angle form due to the multipath transfer of the actual visible light and short positioning distance. The AOA estimation of a VL signal with a random and parametric distributed angle form may give incorrect AOA parameter estimates, which may result in poor VL positioning performance. In this paper, we classify the AOA parameters of the received VL signal into three forms according to the actual positioning channel environment and consider the short-range VL positioning method. We propose a subspace-based AOA parameter estimation technique and a data fusion method, and analyzed the proposed method by simulation and the measurement of the real VL channel characteristics.

협동 센서 융합 기반 화자 성별 분류를 위한 무선 센서네트워크 개발 (A Development of Wireless Sensor Networks for Collaborative Sensor Fusion Based Speaker Gender Classification)

  • 권호민
    • 융합신호처리학회논문지
    • /
    • 제12권2호
    • /
    • pp.113-118
    • /
    • 2011
  • 본 논문에서는 무선센서네트워크에서 이루어지는 협동적 센서융합을 이용한 화자성별분류를 제안하였다. 센서노드들은 BER(Band Energy Ratio) 기반 음성활동검출을 수행함으로써 불필요한 입력 데이터는 제거하고 관련성이 높은 데이터만을 처리 및 경판정한다. 개별적 센서노드에서 생성된 경판정 값들은 융합센터로 송신되고 전역적 결정 융합을 구축하기 때문에 전력 소모를 줄이고 네크워크 자원을 절약한다. 화자성별분류를 위한 센서융합기법으로써 베이시안(Bayesian) 센서융합 및 전역적 가중결정융합가법들이 제안되었다. 베이시안 센서융합의 경우, 배치되는 센서노드 수 변화에 따른 ROC(Receiver Operating Characteristic) 커브의 동작점을 통해 개별 센서노드 레벨에서 얻어진 경판정 값들을 처리하고 최적의 분류 융합을 결정한다. 전역적 결정을 위한 가중치로써 BER 및 MCL(Mutual Confidence Level)을 채택하여 개별적 지역 경판정 값들을 효율적으로 결합 및 융합시킨다. 센서 노드의 수가 증가함에 따라 분류화 성능이 개선되어졌으며 특히 낮은 SNH(Signal to Noise Ratio) 환경에서 성능 개선폭이 더 높게 나타남을 실험적으로 확인하였다.