• Title/Summary/Keyword: Distributed File Systems

Search Result 123, Processing Time 0.021 seconds

A Study on Non-Fungible Token Platform for Usability and Privacy Improvement (사용성 및 프라이버시 개선을 위한 NFT 플랫폼 연구)

  • Kang, Myung Joe;Kim, Mi Hui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.11
    • /
    • pp.403-410
    • /
    • 2022
  • Non-Fungible Tokens (NFTs) created on the basis of blockchain have their own unique value, so they cannot be forged or exchanged with other tokens or coins. Using these characteristics, NFTs can be issued to digital assets such as images, videos, artworks, game characters, and items to claim ownership of digital assets among many users and objects in cyberspace, as well as proving the original. However, interest in NFTs exploded from the beginning of 2020, causing a lot of load on the blockchain network, and as a result, users are experiencing problems such as delays in computational processing or very large fees in the mining process. Additionally, all actions of users are stored in the blockchain, and digital assets are stored in a blockchain-based distributed file storage system, which may unnecessarily expose the personal information of users who do not want to identify themselves on the Internet. In this paper, we propose an NFT platform using cloud computing, access gate, conversion table, and cloud ID to improve usability and privacy problems that occur in existing system. For performance comparison between local and cloud systems, we measured the gas used for smart contract deployment and NFT-issued transaction. As a result, even though the cloud system used the same experimental environment and parameters, it saved about 3.75% of gas for smart contract deployment and about 4.6% for NFT-generated transaction, confirming that the cloud system can handle computations more efficiently than the local system.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.

GWB: An integrated software system for Managing and Analyzing Genomic Sequences (GWB: 유전자 서열 데이터의 관리와 분석을 위한 통합 소프트웨어 시스템)

  • Kim In-Cheol;Jin Hoon
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.1-15
    • /
    • 2004
  • In this paper, we explain the design and implementation of GWB(Gene WorkBench), which is a web-based, integrated system for efficiently managing and analyzing genomic sequences, Most existing software systems handling genomic sequences rarely provide both managing facilities and analyzing facilities. The analysis programs also tend to be unit programs that include just single or some part of the required functions. Moreover, these programs are widely distributed over Internet and require different execution environments. As lots of manual and conversion works are required for using these programs together, many life science researchers suffer great inconveniences. in order to overcome the problems of existing systems and provide a more convenient one for helping genomic researches in effective ways, this paper integrates both managing facilities and analyzing facilities into a single system called GWB. Most important issues regarding the design of GWB are how to integrate many different analysis programs into a single software system, and how to provide data or databases of different formats required to run these programs. In order to address these issues, GWB integrates different analysis programs byusing common input/output interfaces called wrappers, suggests a common format of genomic sequence data, organizes local databases consisting of a relational database and an indexed sequential file, and provides facilities for converting data among several well-known different formats and exporting local databases into XML files.

  • PDF