• Title/Summary/Keyword: Distributed Electric Propulsion

Search Result 4, Processing Time 0.014 seconds

Analysis with Lifting Fan Position of Hybrid UAM Aerodynamic Characteristics (Lifting Fan의 위치가 복합형 UAM의 공력특성에 미치는 영향)

  • Lee, Soohyeon;Cho, Hwankee;Im, Dongkyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • Recently, the development of UAM, which was named by NASA as an alternative to solve the traffic and environmental problems caused by the rapidly progressing urbanization. When designing UAM, the location of lift fans greatly affects the core technology of the eVTOL type, distributed electric propulsion technology and aerodynamic performance of the vehicle. In this paper, a hybrid UAM model was designed using OpenVSP, an open source aircraft configuration modeling program, and aerodynamic analysis was performed according to the lift fans position change by the vortex lattice method. As a result, it is confirmed that the flight parameters and trailing wakes are stable by fixing the lift fan with the state rotated 0° to the flow direction of the aircraft during cruise flight. Also, OpenVSP is a suitable tool to be used in aircraft configuration modeling and design.

A Study on Quantitative Performance Index for Phase-Change Cooling Systems (상변화 냉각시스템의 정량적 성능지수 연구)

  • Jang, Myeong-Eon;Song, Hye-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • In this paper, I introduce Phase-Change Cooling for thermal management of high power devices that can be applied to High Power Laser and Electric Propulsion Systems which are composed of multiple distributed superheat sources. Phase-Change Cooling can be good used to efficient cooling of their heat sources. Phase-Change Cooling has extremely high efficiency of two-phase heat transport by utilizing heat of vaporization, relatively low flow rates and reduced pumps power. And I suggest TPI(Thermal Performance Index) which is a quantitative performance index of Phase-Change Cooling for thermal management. I quantify the performance of Phase-Change Cooling by introducing TPI. I present the test results of TPI's changing refrigerant, heat sink and flow rate of the Phase-Change Cooling system through the experiments and analyze these results.

A Study on the Certification System for eVTOL Aircraft (전기추진 수직이착륙 항공기 인증제도에 대한 고찰)

  • Lim, Daejin;Yee, Kwanjung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.20-29
    • /
    • 2021
  • As the feasibility of urban air mobility (UAM) service using electric vertical take-off and landing (eVTOL) aircraft increases due to aircraft electrification, distributed propulsion, and artificial intelligence technologies, the U.S. and European aeronautical societies have been improving their certification system and regulations for the type certification of eVTOL. The improved certification system is expected to be ready in the near future, after the European Union Aviation Safety Agency (EASA) proposed the VTOL Special Condition, SC-VTOL in 2019. However, the current domestic certification system is still insufficient to properly respond to eVTOL. This study investigated the development trends of foreign eVTOL and certification systems, identified considerations to improve the domestic certification system, and proposed the measures for type certificates and type certificates validation of eVTOL based on the comparison between SC-VTOL and Korea airworthiness standards (KAS).

Development of Panel-Based Rapid Aerodynamic Analysis Method Considering Propeller Effect (프로펠러 효과를 반영 가능한 패널 기반 신속 공력 해석 기법 개발)

  • Tai, Myungsik;Lee, Yebin;Oh, Sejong;Shin, Jeongwoo;Lim, Joosup;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • Electric-powered distributed propulsion aircraft possess a complex wake flow and mutual interference with the airframe, due to the use of many propellers. Accordingly, in the early design stage, rapid aerodynamic and load analysis considering the effect of propellers for various configurations and flight conditions are required. In this study, an efficient panel-based aerodynamic analysis method that can take into account the propeller effects is developed and validated. The induced velocity field in the region of propeller wake is calculated based on Actuator Disk Theory (ADT) and is considered as the boundary condition at the vehicle's surface in the three-dimensional steady source-doublet panel method. Analyses are carried out by selecting an isolated propeller of the Korea Aerospace Research Institute (KARI)'s Quad Tilt Propeller (QTP) aircraft and the propeller-wing configuration of the former experimental study as benchmark problems. Through comparisons with the results of computational fluid dynamics (CFD) based on actuator methods, the wake velocity of propeller and the changes in the aerodynamic load distribution of the wing due to the propeller operation are validated. The method is applied to the analysis of the Optional Piloted Personal Aerial Vehicle (OPPAV) and QTP, and the practicality and validity of the method are confirmed through comparison and analysis of the computational time and results with CFD.