• Title/Summary/Keyword: Distributed Algorithm

Search Result 1,955, Processing Time 0.036 seconds

A Stabilization of MC-BCS-SPL Scheme for Distributed Compressed Video Sensing (분산 압축 비디오 센싱을 위한 MC-BCS-SPL 기법의 안정화 알고리즘)

  • Ryu, Joong-seon;Kim, Jin-soo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.731-739
    • /
    • 2017
  • Distributed compressed video sensing (DCVS) is a framework that integrates both compressed sensing and distributed video coding characteristics to achieve a low complexity video sampling. In DCVS schemes, motion estimation & motion compensation is employed at the decoder side, similarly to distributed video coding (DVC), for a low-complex encoder. However, since a simple BCS-SPL algorithm is applied to a residual arising from motion estimation and compensation in conventional MC-BCS-SPL (motion compensated block compressed sensing with smoothed projected Landweber) scheme, the reconstructed visual qualities are severly degraded in Wyner-Ziv (WZ) frames. Furthermore, the scheme takes lots of iteration to reconstruct WZ frames. In this paper, the conventional MC-BCS-SPL algorithm is improved to be operated in more effective way in WZ frames. That is, first, the proposed algorithm calculates a correlation coefficient between two reference key frames and, then, by selecting adaptively the reference frame, the residual reconstruction in pixel domain is performed to the conventional BCS-SPL scheme. Experimental results show that the proposed algorithm achieves significantly better visual qualities than conventional MC-BCS-SPL algorithm, while resulting in the significant reduction of the decoding time.

Distributed Recommendation System Using Clustering-based Collaborative Filtering Algorithm (클러스터링 기반 협업 필터링 알고리즘을 사용한 분산 추천 시스템)

  • Jo, Hyun-Je;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.101-107
    • /
    • 2014
  • This paper presents an efficient distributed recommendation system using clustering collaborative filtering algorithm in distributed computing environments. The system was built based on Hadoop distributed computing platform, where distributed Min-hash clustering algorithm is combined with user based collaborative filtering algorithm to optimize recommendation performance. Experiments using Movie Lens benchmark data show that the proposed system can reduce the execution time for recommendation compare to sequential system.

A Reliable Distributed Shortest Path Routing Algorithm for Computer Networks (컴퓨터 네트워크를 위한 신뢰성 있는 분산 최단경로 설정 알고리즘)

  • 박성우;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.24-34
    • /
    • 1994
  • In most computer networks, each node needs to have correct routing information for finding shortest paths to forward data packets. In a distributed environment, however, it is very difficult to keep consistent routing information throughout the whole network at all times. The presence of out-dated routing information can cause loop-forming which in turn causes the significant degradation of network performance. In this paper, a new class of routing algorithm for loop detection and resolution is discussed. The proposed algorithm is based on the distributed Bellman-Ford algorithm which is popularly adopted for routing in computer network. The proposed algorithm detects and resolves all kinds( two-node and multi-node) of loop in a distributed environment within finite time while maintaining the simplicity of the distributed Bellman-Ford algorithm.

  • PDF

Decombined Distributed Parallel VQ Codebook Generation Based on MapReduce (맵리듀스를 사용한 디컴바인드 분산 VQ 코드북 생성 방법)

  • Lee, Hyunjin
    • Journal of Digital Contents Society
    • /
    • v.15 no.3
    • /
    • pp.365-371
    • /
    • 2014
  • In the era of big data, algorithms for the existing IT environment cannot accept on a distributed architecture such as hadoop. Thus, new distributed algorithms which apply a distributed framework such as MapReduce are needed. Lloyd's algorithm commonly used for vector quantization is developed using MapReduce recently. In this paper, we proposed a decombined distributed VQ codebook generation algorithm based on a distributed VQ codebook generation algorithm using MapReduce to get a result more fast. The result of applying the proposed algorithm to big data showed higher performance than the conventional method.

Development of Monitor Positioning Algorithm considering Power System Topology and Distributed Generation (분산전원과 토폴로지를 고려한 배전계통에서의 전기품질 모니터 위치 선정 기법)

  • Moon, Dae-Seong;Kim, Yun-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1744-1751
    • /
    • 2008
  • This paper presents a monitor positioning algorithm to identify the power quality event source in the distribution system with distributed generations. This algorithm determines the appropriate number of monitors and their locations considering power system topology together with distributed generation. This paper summarizes the guidelines of monitor positioning into five principles and defines the weighting factors according to the principles. To evaluate the adequacy of monitor positioning results, ambiguity indices considering monitor location and system topology are proposed. The optimal number and locations of monitors are determined from optimization routine using the weighting factors and the monitor positioning results are evaluated in terms of ambiguity indices. The algorithm is applied to IEEE 13 bus test feeder and suggests the optimal number and locations of power quality monitors. The proposed approach can realize the expert's knowledge on monitor positioning into a sophisticated automatic computing algorithm.

A Load Sharing Algorithm Including An Improved Response Time using Evolutionary Information in Distributed Systems

  • Lee, Seong-Hoon
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.13-18
    • /
    • 2008
  • A load sharing algorithm is one of the important factors in computer system. In sender-initiated load sharing algorithms, when a distributed system becomes to heavy system load, it is difficult to find a suitable receiver because most processors have additional tasks to send. The sender continues to send unnecessary request messages for load transfer until a receiver is found while the system load is heavy. Because of these unnecessary request messages it results in inefficient communications, low cpu utilization, and low system throughput. To solve these problems, we propose a self-adjusting evolutionary algorithm for improved sender-initiated load sharing in distributed systems. This algorithm decreases response time and increases acceptance rate. Compared with the conventional sender-initiated load sharing algorithms, we show that the proposed algorithm performs better.

A Fault-tolerant Mutual Exclusion Algorithm in Asynchronous Distributed Systems

  • Kim, Yoon
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • Mutual Exclusion is one of the most studied topics in distributed systems where processes communicate by asynchronous message passing. It is often necessary for multiple processes at different sites to access a shared resource or data called a critical section (CS) in distributed systems. A number of algorithms have been proposed to solve the mutual exclusion problem in distributed systems. In this paper, we propose the new algorithm which is modified from Garg's algorithm[1] thus works properly in a fault-tolerant system. In our algorithm, after electing the token generator, the elected process generates a new token based on the information of the myreqlist which is kept by every process and the reqdone which is received during election. Consequently, proposed algorithm tolerates any number of process failures and also does even when only one process is alive.

Modeling and Simulation of Efficient Load Balancing Algorithm on Distributed OCSP (분산 OCSP에서의 효율적인 로드 밸런싱 기법에 관한 모델링 및 시뮬레이션)

  • Choi Ji-Hye;Cho Tae Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.4
    • /
    • pp.43-53
    • /
    • 2004
  • The distributed OCSP (Online Certificate Status Protocol), composed of multiple responders, is a model that enhances the utilization of each responder and reduces the response time. In a multi-user distributed environment, load balancing mechanism must be developed for the improvement of the performance of the whole system. Conservative load balancing algorithms often ignore the communication cost of gathering the information of responders. As the number of request is increased, however, fail to consider the communication cost may cause serious problems since the communication time is too large to disregard. We propose an adaptive load balancing algorithm and evaluate the effectiveness by performing modeling and simulation. The principal advantage of new algorithm is in their simplicity: there is no need to maintain and process system state information. We evaluated the quality of load balancing achieved by the new algorithm by comparing the queue size of responders and analyzing the utilization of these responders. The simulation results show how efficiently load balancing is done with the new algorithm.

  • PDF

Reliability-Based Adaptive Consensus Algorithm for Synchronization in a Distributed Network (분산 네트워크에서 단말 간 동기화를 위한 신뢰도 기반의 적응적 컨센서스 알고리즘)

  • Seo, Sangah;Yun, Sangseok;Ha, Jeongseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.545-553
    • /
    • 2017
  • This paper investigates a synchronization algorithm for a distributed network which does not have a centralized infrastructure. In order to operate a distributed network, synchronization across distributed terminals should be acquired in advance, and hence, a plenty of distributed synchronization algorithms have been studied extensively in the past. However, most of the previous studies focus on the synchronization only in fault-free networks. Thus, if there are some malfunctioning terminals in the network, the synchronization can not be guaranteed with conventional distributed synchronization methods. In this paper, we propose a reliability-based adaptive consensus algorithm which can effectively acquire the synchronization across distributed terminals and confirm performance of the proposed algorithm by conducting numerical simulations.

Capacity Optimizing method of Distributed Generators in Stand-Alone Microgrid Considering Grid Link-Characteristics

  • Han, Soo-Kyeong;Choi, Hyeong-Jin;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1483-1493
    • /
    • 2018
  • Recently, more power facilities are needed to cope with the increasing electric demand. However, the additional construction of generators, transmission and distribution installations is not easy because of environmental problems and citizen's complaints. Under this circumstance, a microgrid system with distributed renewable resources emerges as an alternative of the traditional power systems. Moreover, the configuration of power system changes with more DC loads and more DC installations. This paper is written to introduce an idea of a genetic algorithm-based solution to determine the optimal capacity of the distributed generators depending on the types of system configuration: AC-link, DC-link and Hybrid-link types. In this paper, photovoltaic, wind turbine, energy storage system and diesel generator are considered as distributed generators and the feasibility of the proposed algorithm is verified by comparing the calculated capacity of each distributed resource with HOMER simulation results for 3 types of system configuration.