Proceedings of the Fisheries Business Administration Society of Korea Conference
/
2007.12a
/
pp.167-184
/
2007
The objectives of this paper are to identify the causes of the corporate distress and to develop a distress prediction model with the financial information in fishery industry. In this study, the corporate distress is defined as economic failure and technical insolvency. Economic failure occurs by reduction, shut-down, or change of the business and technical insolvency results from failure to pay the financial debt of companies. The 33 distressed firms from 1991 to 2003 were composed by 14 economic failure companies, 15 technical insolvency companies. 4 companies applied to the both cases. The analysis of distress prediction of fishery companies were accomplished according to the distress definition. The analysis was carried out as two steps. The first step was the univariate analysis, which was used for checking the prediction power of individual financial variable. The t-test is used to identify the differences in financial variables between the distressed group and the non-distressed group. The second step was to develop distress prediction model with logistic regression. The variables showed the significant difference in univariate analysis were selected as the prediction variables. The financial ratios, used in the logistic regression model, were selected by backward elimination method. To test stability of the distress prediction model, the whole sample was divided as three sub-samples, period 1(1990$\sim$1993), period 2(1994$\sim$1997), period 3(1998$\sim$2002). The final model built from whole sample appled each three sub-samples. The results of the logistic analysis were as follows. the growth, profitability, stability ratios showed the significant effect on the distress. the some different result was found in the sub-sample (economic failure and technical insolvency). The growth and the profitability were important to predict the economic failure. The profitability and the activity were important to predict technical insolvency. It means that profitability is the really important factor to the fishery companies.
The objectives of this paper are to identify the causes of the corporate distress and to develop a distress prediction model with the financial information in fishery industry. In this study, the corporate distress is defined as economic failure and technical insolvency. Economic failure occurs by reduction, shut - down, or change of the business and technical insolvency results from failure to pay the financial debt of companies. The 33 distressed firms from 1991 to 2003 were composed by 14 economic failure companies, 15 technical insolvency companies. 4 companies applied to the both cases. The analysis of distress prediction of fishery companies were accomplished according to the distress definition. The analysis was carried out as two steps. The first step was the univariate analysis, which was used for checking the prediction power of individual financial variable. The t - test is used to identify the differences in financial variables between the distressed group and the non - distressed group. The second step was to develop distress prediction model with logistic regression. The variables showed the significant difference in univariate analysis were selected as the prediction variables. The financial ratios, used in the logistic regression model, were selected by backward elimination method. To test stability of the distress prediction model, the whole sample was divided as three sub-samples, period 1(1990 - 1993), period 2(1994 - 1997), period 3(1998 - 2002). The final model built from whole sample appled each three sub - samples. The results of the logistic analysis were as follows. the growth, profitability, stability ratios showed the significant effect on the distress. the some different result was found in the sub - sample (economic failure and technical insolvency). The growth and the profitability were important to predict the economic failure. The profitability and the activity were important to predict technical insolvency. It means that profitability is the really important factor to the fishery companies.
Purpose - This current study will investigate the average financial ratio of top and failed five-star hotels in the Jeju area. A total of 14 financial ratio variables are utilized. This study aims to; first, assess financial ratio of the first-class hotels in Jeju to establishing variables, second, develop distress prediction model for the first-class hotels in Jeju district by using logit analysis and third, evaluate distress prediction capacity for the first-class hotels in Jeju district by using logit analysis. Research design, data, and methodology - The sample was collected from year 2015 and 14 financial ratios of 12 first-class hotels in Jeju district. The results from the samples were analyzed by t-test, and the independent variables were chosen. This was an empirical study where the distress prediction model was evaluated by logit analysis. This current research has focused on critically analyzing and differentiating between the top and failed hotels in the Jeju area by utilizing the 14 financial ratio variables. Results - The verification result of the accuracy estimated by logit analysis has shown to indicate that the distress prediction model's distress prediction capacity was 83.3%. In order to extract the factors that differentiated the top hotels in the Jeju area from the failed hotels among the 14 chosen, the analysis of t-black was utilized by independent variables. Logit analysis was also used in this study. As a result, it was observed that 5 variables were statistically significant and are included in the logit analysis for discernment of top and failed hotels in the Jeju area. Conclusions - The distress prediction press' prediction capability was compared in this research analysis. The distress prediction press prediction capability was shown to range from 75-85% by logit analysis from a previous study. In this current research, the study's prediction capacity was shown to be 83.33%. It was considered a high number and was found to belong to the range of the previous study's prediction capacity range. From a practical perspective, the capacity of the assessment of the distress prediction model in the top and failed hotels in the Jeju area was considered to be a prominent factor in applications of future hotel appraisal.
Purpose: The purpose of this study was evaluated to compare the predictive power of distress prediction models by using discriminant analysis method and logit analysis method for food service franchise industry in Korea. Research design, data and methodology: Forty-six food service franchise industry with high sales volume in the 2017 were selected as the sample food service franchise industry for analysis. The fourteen financial ratios for analysis were calculated from the data in the 2017 statement of financial position and income statement of forty-six food service franchise industry in Korea. The fourteen financial ratios were used as sample data and analyzed by t-test. As a result seven statistically significant independent variables were chosen. The analysis method of the distress prediction model was performed by logit analysis and multiple discriminant analysis. Results: The difference between the average value of fourteen financial ratios of forty-six food service franchise industry was tested through t-test in order to extract variables that are classified as top-leveled and failure food service franchise industry among the financial ratios. As a result of the univariate test appears that the variables which differentiate the top-leveled food service franchise industry to failure food service industry are income to stockholders' equity, operating income to sales, current ratio, net income to assets, cash flows from operating activities, growth rate of operating income, and total assets turnover. The statistical significances of the seven financial ratio independent variables were also confirmed by logit analysis and discriminant analysis. Conclusions: The analysis results of the prediction accuracy of each distress prediction model in this study showed that the forecast accuracy of the prediction model by the discriminant analysis method was 84.8% and 89.1% by the logit analysis method, indicating that the logit analysis method has higher distress predictability than the discriminant analysis method. Comparing the previous distress prediction capability, which ranges from 75% to 85% by discriminant analysis and logit analysis, this study's prediction capacity, which is 84.8% in the discriminant analysis, and 89.1% in logit analysis, is found to belong to the range of previous study's prediction capacity range and is considered high number.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.11
/
pp.151-156
/
2019
This study aims to develop a distress prediction model and to evaluate distress prediction power for the food services industry by using 2017 food service industry financial ratios. Samples were collected from 46 food service industries, and we extracted 14 financial ratios from them. The results show that, first, there are eight ratios (financial ratio, current ratio, operating income to sales, net income to assets, ratio of cash flows, income to stockholders' equity, rate of operating income, and total asset turnover) that can discriminate failures in food service industries and the top-level food service industries. Second, by using these eight financial ratios, the logit function classifies the top-level food service industries, and failures in the food service industry can be estimated by using logit analysis. The verification results as to accuracy in the estimated logit analysis indicate that the model's distress-prediction power is 89.1%.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.10
/
pp.520-526
/
2016
This study aims to develop a distress prediction model, in order to evaluate the distress prediction power for first-class hotels and to calculate the average financial ratio in the Seoul area by using the financial ratios of hotels in 2015. The sample data was collected from 19 first-class hotels in Seoul and the financial ratios extracted from 14 of these 19 hotels. The results show firstly that the seven financial ratios, viz. the current ratio, total borrowings and bonds payable to total assets, interest coverage ratio to operating income, operating income to sales, net income to stockholders' equity, ratio of cash flows from operating activities to sales and total assets turnover, enable the top-level corporations to be discriminated from the failed corporations and, secondly, by using these seven financial ratios, a discriminant function which classifies the corporations into top-level and failed ones is estimated by linear multiple discriminant analysis. The accuracy of prediction of this discriminant capability turned out to be 87.9%. The accuracy of the estimates obtained by discriminant analysis indicates that the distress prediction model's distress prediction power is 78.95%. According to the analysis results, hotel management groups which administrate low level corporations need to focus on the classification of these seven financial ratios. Furthermore, hotel corporations have very different financial structures and failure prediction indicators from other industries. In accordance with this finding, for the development of credit evaluation systems for such hotel corporations, there is a need for systems to be developed that reflect hotel corporations' financial features.
Special pavement test sections were selected to develop a distress prediction model on asphalt pavement of National Highway. Experimental design was conducted for the selection of LTPP sections on in-service pavement(new and overlaid pavement) using several variables affecting pavement performance. Preliminary sections that satisfied the design template were chosen from the national highway database, and final selection was fixed through field inspection. The number of monitoring section is 95 including 47 overlaid pavement. A pavement distress data such as crack and rutting were collected for two years. An interim pavement performance analysis was peformed to show feasibility of performance monitoring program. Data related pavement such as traffic, weather, material characteristic and crack etc. should be collected for next project years and distress prediction model will be developed through the statistical analysis.
Financial distress can damage stakeholders and even lead to significant social costs. Thus, financial distress prediction is an important issue in macroeconomics. However, most existing studies on building a financial distress prediction model have only considered idiosyncratic risk factors without considering systematic risk factors. In this study, we propose a prediction model that considers both the idiosyncratic risk based on a financial ratio and the systematic risk based on a business cycle. Ultimately, we build several IT artifacts associated with financial ratio and add them to the idiosyncratic risk factors as well as address the imbalanced data problem by using an oversampling technique and synthetic minority oversampling technique (SMOTE) to ensure good performance. When considering systematic risk, our study ensures that each data set consists of both financially distressed companies and financially sound companies in each business cycle phase. We conducted several experiments that change the initial imbalanced sample ratio between the two company groups into a 1:1 sample ratio using SMOTE and compared the prediction results from the individual data set. We also predicted data sets from the subsequent business cycle phase as a test set through a built prediction model that used business contraction phase data sets, and then we compared previous prediction performance and subsequent prediction performance. Thus, our findings can provide insights into making rational decisions for stakeholders that are experiencing an economic crisis.
International conference on construction engineering and project management
/
2011.02a
/
pp.382-388
/
2011
Being aware of the risk in advance necessitates intricate processes but is feasible. Although previous studies have demonstrated high accuracy, their performance still leaves room for improvement. A self-organizing feature map (SOM) based neurofuzzy model is developed in this study to provide another alternative for forecasting corporate financial distress. The model is designed to yield high prediction accuracy, as well as reference rules for evaluating corporate financial status. As a database, the study collects all financial reports from listed construction companies during the latest decade, resulting in over 1000 effective samples. The proportion of "failed" and "non-failed" companies is approximately 1:2. Each financial report is comprised of 25 ratios which are set as the input variable s. The proposed model integrates the concepts of pattern classification, fuzzy modeling and SOM-based optimization to predict corporate financial distress. The results exhibit a high accuracy rate at 85.1%. This model outperforms previous tools. A total of 97 rules are extracted from the proposed model which can be also used as reference for construction practitioners. Users may easily identify their corporate financial status by using these rules.
The traditional classification methods mostly assume that the data for class distribution is balanced, while imbalanced data is widely found in the real world. So it is important to solve the problem of classification with imbalanced data. In Mahalanobis-Taguchi system (MTS) algorithm, data classification model is constructed with the reference space and measurement reference scale which is come from a single normal group, and thus it is suitable to handle the imbalanced data problem. In this paper, an improved method of MTS-CBPSO is constructed by introducing the chaotic mapping and binary particle swarm optimization algorithm instead of orthogonal array and signal-to-noise ratio (SNR) to select the valid variables, in which G-means, F-measure, dimensionality reduction are regarded as the classification optimization target. This proposed method is also applied to the financial distress prediction of Chinese listed companies. Compared with the traditional MTS and the common classification methods such as SVM, C4.5, k-NN, it is showed that the MTS-CBPSO method has better result of prediction accuracy and dimensionality reduction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.