DOI QR코드

DOI QR Code

Evaluation of Distress Prediction Model for Food Service Industry in Korea : Using the Logit Analysis

국내 외식기업의 부실예측모형 평가 : 로짓분석을 적용하여

  • Received : 2019.07.24
  • Accepted : 2019.11.01
  • Published : 2019.11.30

Abstract

This study aims to develop a distress prediction model and to evaluate distress prediction power for the food services industry by using 2017 food service industry financial ratios. Samples were collected from 46 food service industries, and we extracted 14 financial ratios from them. The results show that, first, there are eight ratios (financial ratio, current ratio, operating income to sales, net income to assets, ratio of cash flows, income to stockholders' equity, rate of operating income, and total asset turnover) that can discriminate failures in food service industries and the top-level food service industries. Second, by using these eight financial ratios, the logit function classifies the top-level food service industries, and failures in the food service industry can be estimated by using logit analysis. The verification results as to accuracy in the estimated logit analysis indicate that the model's distress-prediction power is 89.1%.

본 연구는 2017년 기준 매출액 상위 46개 외식 업체를 선정 후 이들 업체들의 재무 비율을 산출한 후 이를 변수로 활용하여 로짓 분석에 의한 부실 예측모형의 평가에 목적이 있다. 국내 46개 외식 업체의 14개 재무비율을 변수로 선정하여 로짓 분석에 의한 실증 분석을 실시하였으며 실증 분석 결과는 다음과 같다. 첫째, 14개 재무 비율 중 건전 외식 기업과 부실 외식 기업을 구분하는 재무 비율은 유동 비율, 매출액 영업 이익률, 자기 자본 순이익률, 영업 현금 흐름비율, 영업 이익 증가율 및 총자산 회전율로 총 7개로 나타났으며 다른 7개의 재무 비율( 부채 비율, 차입금 의존도, 영업 이익 대비 이자 보상 비율, 매출액 순이익률, 총자산 순이익률, 매출액 증가율, 당기순이익 증가율, 총자산 증가율)은 통계적으로 유의하지 않은 것으로 분석되었다. 둘째, 7개 재무 비율을 로짓 함수의 변수로 활용하여 건전 외식 기업과 부실 외식 기업을 구분하는 로짓 분석에 의한 부실 예측 모형의 예측력은 89.1%로 나타났다.

Keywords

References

  1. http://www.foodnews.co.kr/news/articleView.html?idxno=70207
  2. http://www.foodbank.co.kr/news/articleView.html?idxno=54705
  3. S. J. Kim & H. K. Yu, "A Study on the Influence of Local Economic Environmental Change on the Food Service Industry: Focused on the Bucheon Area", Journal of food service management, Vol.7, No.2, pp.65-82, 2004.
  4. S. J. Kang & T. Y. Yoo, "An Analysis of Success Factors for Restaurants in University Towns : Focused on Cuisine, Management, and Marketing Tools". Journal of food service management, Vol.21, No.5, pp.241-268, 2018.
  5. C. H. Ahn, "Kosdaq Enterprises insolvency prediction model study on the comparative analysis of Discrimination : A logistic regression model and multivariate discriminant function center", Korea Science & Art Forum, Vol.25, pp.241-251, 2016. DOI : https://doi.org/10.17548/ksaf.2016.09.25.241
  6. J. H. Nam & Yi, K. B., "Non-Financial Information and Comparison of Bankruptcy Prediction Model", Seogang Economic Review, Vol.31, No.1, pp.1-29, 2002.
  7. W. H. Beaver, "Financial Ratios as Predictors of Failure", Journal of Accounting Research, Vol.5, pp.71-111, 1966. DOI: https://www.jstor.org/stable/2490171 https://doi.org/10.2307/2490171
  8. S. J. Kim, "Comparing Distress Prediction Models to the Hotel Corporate Structure: Based on Predictive Power", Journal of Tourism Science, Vol.28, No.4, pp.9-26. 2005.
  9. E. I. Altman, "Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy", Journal of Finance, Vol.23, No.4, pp.589-609, 1968. DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
  10. Y. L. Jung, Financial Ratio and the Prediction of Corporate Financial Distress, Master's thesis, Graduate School of Tourism of Ewha Womans University, pp.46-49, 2009.
  11. E. B. Deakin, "A Discriminant Analysis of Predictors of Business Failure", Journal of Accounting Research, Vol.16, Spring, pp.167-179, 1972. DOI: https://dx.doi.org/10.2307/2490225
  12. J. A. Ohlson, "Financial Ratios and the Probability Prediction of Bankruptcy", Journal of Accounting Research, Vol.18, No.1, pp.109-131, 1980. DOI: https://doi.org/10.2307/2490395
  13. S. W. Jo, A Study on the Forecasting of Accounting Fraud, Ph.D dissertation, Graduate School of Dankuk University, pp.52-59, 2007.
  14. H. Li & J. Sun, "Empirical Research of Hybridizing Principal Component Analysis with Multi-variate Discriminant Analysis and Logistic Regression for Business Failure Prediction", Expert Systems with Applications, Vol.38, pp.6244-6253, 2011. DOI: https://doi.org/10.1016/j.eswa.2010.11.043
  15. F. J. L. Iturriaga & I. P. Sanz, "Bankruptcy Visualization and Prediction Using Neural Networks: A Study of U.S. Commercial Banks", Expert Systems with Applications, Vol.42, pp.2857-2869, 2015. https://doi.org/10.1016/j.eswa.2014.11.025
  16. F. Z. Azayite & S. Achchab, "Hybrid Discriminant Neural Networks for Bankruptcy Prediction and Risk Scoring", Procedia Computer Science, Vol.83, pp.670-674, 2016. DOI: https://doi.org/10.1016/j.procs.2016.04.149
  17. J. K. Ok, Integrated Corporate Bankruptcy Prediction Model Using Genetic Algorithms, Ph.D dissertation, Graduate School of Dongkuk University, 2010.
  18. E. K. Laitinen & A. Suvas, "Financial Distress Prediction in an International Context: Moderating Effects of Hofstede's Original Cultural Dimensions", Journal of Behavioral and Experimental Finance, Vol.9, pp.98-118, 2016. DOI: https://doi.org/10.1016/j.jbef.2015.11.003
  19. J. E. Park & J. B. Hong, "The Empirical Study to Identify the Distress Causes of Public Companies after Financial Crisis with Survival Analysis", Journal of the Korean Data Analysis Society, Vol.12, No.5(B), pp.2713-2724, 2010. 10.
  20. H. K. Kim, Management Performance Evaluation and Failure Prediction Models for Financial Institutions: Focusing on the cooperative financial institutions, Ph.D dissertation, Graduate School of Hankuk University of Foreign Studies, 2012.
  21. K. H. Kang, "Developing a Model to Predict the Insolvency of Medium and Small General Contractors", Master's thesis, Graduate School of Engineering of Hanyang University, pp.37-45, 2012.
  22. S. S. Ma, "The Usefulness of Earnings Management Information on Failure Prediction, Ph.D dissertation, Graduate School of Chonnam National University, pp.67-79, 2012.
  23. K. W. Jung, A Study on the Default Prediction Model of SMES after Supporting the Credit Guarantee, Master's thesis, Graduate School of Hanyang University, pp.53-61, 2014.