• Title/Summary/Keyword: Distorted source voltage

Search Result 39, Processing Time 0.031 seconds

Research on a Multi-Objective Control Strategy for Current-source PWM Rectifiers under Unbalanced and Harmonic Grid Voltage Conditions

  • Geng, Yi-Wen;Liu, Hai-Wei;Deng, Ren-Xiong;Tian, Fang-Fang;Bai, Hao-Feng;Wang, Kai
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.171-184
    • /
    • 2018
  • Unbalanced and distorted grid voltages cause the grid side current of a current source PWM rectifier to be heavily distorted. They can also cause the DC-link current to fluctuate with a huge amplitude. In order to enhance the performance of a current-source PWM rectifier under unbalanced and harmonic grid voltage conditions, a mathematical model of a current-source PWM rectifier is established and a flexible multi-objective control strategy is proposed to control the DC-link current and grid-current. The fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic components of the grid voltage are first separated with the proposed control strategy. The grid current reference are optimized based on three objectives: 1) sinusoidal and symmetrical grid current, 2) sinusoidal grid current and elimination of the DC-current $2^{nd}$ order fluctuations, and 3) elimination of the DC-current $2^{nd}$ and $6^{th}$ order fluctuations. To avoid separation of the grid current components, a multi-frequency proportional-resonant controller is applied to control the fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic current. Finally, experimental results verify the effectiveness of proposed control strategy.

A Novel Harmonic Identification Algorithm for the Active Power Filters in Non-Ideal Voltage Source Systems

  • Santiprapan, Phonsit;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1637-1649
    • /
    • 2017
  • This paper describes an intensive analysis of a harmonic identification algorithm in non-ideal voltages source systems. The dq-axis Fourier with a positive sequence voltage detector (DQFP) is a novel harmonic identification algorithm for active power filters. A compensating current control system based on repetitive control is presented. A design and stability analysis of the proposed current control are also given. The aim of the paper is to achieve a robustness of the harmonic identification in a distorted and unbalanced voltage source. The proposed ideas are supported by a hardware in the loop technique based on a $eZdsp^{TM}$ F28335 and the Simulink program. The obtained results are presented to demonstrate the performance of the harmonic identification and the control strategy for the active power filter in non-ideal systems.

Extension of the Operating Speed for Vector-Controlled Induction Machine Drives in the Overmodulation Range

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.477-486
    • /
    • 2012
  • This paper proposes a novel current control scheme for vector-controlled induction machine (IM) drives in the overmodulation (OVM) range, with which the voltage utilization of the voltage-source inverter (VSI) can be maximized. In the OVM region, the original voltage reference is modified by changing its magnitude and angle, which causes the motor current to be distorted, resulting in a deterioration of the current control performance. To meet with this situation, the harmonic components in the feedback currents should be eliminated before being input to the PI current controllers. For this, a composite observer is applied to extract the fundamental and harmonic components from the distorted currents, which gives a good performance without a delay and the effect of a fundamental frequency variation. In addition, through a detailed analysis of the response of the PI current controllers in the OVM range, the effectiveness of using the composite observer is demonstrated. Simulation and experimental results for a 3-kW induction motor drive are shown to verify the validity of the proposed method.

Power Flow Control of a Multi-bus/Three-feeder Distribution System Using Generalized Unified Power Quality Conditioner

  • Mohammed, B.S.;Ibrahim, R.;Perumal, N.;Rao, K.S. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.8-17
    • /
    • 2015
  • This paper analyses the power flow of a three-feeder/multi-bus distribution system by a custom Generalized Power Quality Conditioner (GUPQC). The GUPQC has been realized by three voltage source converters (VSCs) coupled back-to-back through a common DC-link capacitor on the DC-side. One feeder was controlled by the shunt compensator, whereas each of the other two feeders was controlled by the proposed novel series compensator. The GUPQC has the capability to simultaneously compensate voltage and current quality problems of a multi-bus/three-feeder distribution system. Besides that, the power can be transferred from one feeder to other feeders to compensate for poor power quality problems. Extensive simulation studies were carried out by using MATLAB/SIMULINK software to establish the ability of the GUPQC to improve power quality of the distribution systems under distorted supply voltage conditions.

Virtual Flux and Positive-Sequence Power Based Control of Grid-Interfaced Converters Against Unbalanced and Distorted Grid Conditions

  • Tao, Yukun;Tang, Wenhu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1265-1274
    • /
    • 2018
  • This paper proposes a virtual flux (VF) and positive-sequence power based control strategy to improve the performance of grid-interfaced three-phase voltage source converters against unbalanced and distorted grid conditions. By using a second-order generalized integrator (SOGI) based VF observer, the proposed strategy achieves an AC voltage sensorless and grid frequency adaptive control. Aiming to realize a balanced sinusoidal line current operation, the fundamental positive-sequence component based instantaneous power is utilized as the control variable. Moreover, the fundamental negative-sequence VF feedforward and the harmonic attenuation ability of a sequence component generator are employed to further enhance the unbalance regulation ability and the harmonic tolerance of line currents, respectively. Finally, the proposed scheme is completed by combining the foregoing two elements with a predictive direct power control (PDPC). In order to verify the feasibility and validity of the proposed SOGI-VFPDPC, the scenarios of unbalanced voltage dip, higher harmonic distortion and grid frequency deviation are investigated in simulation and experimental studies. The corresponding results demonstrate that the proposed strategy ensures a balanced sinusoidal line current operation with excellent steady-state and transient behaviors under general grid conditions.

Output Voltage Regulation for Harmonic Compensation under Islanded Mode of Microgrid

  • Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.464-475
    • /
    • 2017
  • This study examines a P+multi resonant-based voltage control for voltage harmonics compensation under the islanded mode of a microgrid. In islanded mode, the inverter is defined as a voltage source to supply the full local load demand without the connection to the grid. On the other hand, the output voltage waveform is distorted by the negative and zero sequence components and current harmonics due to the unbalanced and nonlinear loads. In this paper, the P+multi resonant controller is used to compensate for the voltage harmonics. The gain tuning method is assessed by the tendency analysis of the controller as the variation of gain. In addition, this study analyzes the slight voltage magnitude drop due to the practical form of the P+multi resonant and proposes a counter method to solve this problem by adding the PI-based voltage restoration method. The proposed P+multi resonant controller to compensate for the voltage harmonics is verified through the PSIM simulation and experimental results.

Sinusoidal Current Control of Single-Phase PWM Converters under Voltage Source Distortion Using Composite Observer (왜곡된 전원 전압하에서 Composite 관측기를 이용한단상 PWM 컨버터의 정현파 전류 제어)

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.466-476
    • /
    • 2011
  • In this paper, a high-performance current control for the single-phase PWM converter under distorted source voltages is proposed using a composite observer. By applying the composite observer, the fundamental and high-order harmonic components of the source voltage and current are extracted without a delay. The extracted fundamental component is used for a phase-lock loop (PLL) system to detect the phase angle of the source voltage. A multi-PR (proportional-resonant) controller is employed to regulate the single-phase line current. The high-order harmonic components of the line current are easily eliminated, resulting in the sinusoidal line current. The simulation and experimental results have verified the validity of the proposed method.

Analysis of the Errors on the Output voltage of Inverter Caused by Switching Dead Time (스위칭 데드타임에 의한 인버터 출력 전압의 오차 해석)

  • Cho, Kyu-Min
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.120-127
    • /
    • 1999
  • The dead time which is inserted in switching signals of PWM voltage source inverters distorts its output. As a result, the deviations of real fundamental voltage and phase compared with the reference are occurred. And also the harmonics on its output are increased. In this paper, numerical analysis of the distorted voltage on the output of inverter caused by switching dead time is performed. With the calculation results, the fundamental voltage gain and phase deviations according to the modulation index, load displacement factor and dead time are presented.

  • PDF

Power Quality Improvement of an Electric Arc Furnace Using a New Universal Compensating System

  • Esfandiari Ahmad;Parniani Mostafa;Mokhtari Hossein;Ali Yazdian-Varjani
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.195-204
    • /
    • 2006
  • This paper presents a new compensating system, consisting of series and shunt active filters, for mitigating voltage and current disturbances. The shunt filter is used to compensate for unbalanced and distorted load currents. The series filter comprises two inverters, used to suppress voltage disturbances and handle source currents independently. This configuration is devised to reduce the overall cost of active compensators by using low-frequency high-current switches for the latter inverter. The filters are controlled separately using a novel control strategy. Since voltages at the point of common coupling contain interharmonics, conventional methods cannot be used for extracting voltage references. Therefore, voltage references are obtained from generated sinusoidal waveforms by a phase-locked loop. Current references are detected based on rotating frame vector mapping. Simulation results are presented to verify the system.

A Current Controller with the Compensation of the Input Voltage Unbalance and Distortion for Three Phase PWM Rectifier (전원전압의 불평형 및 왜곡 보상기능을 갖는 3상 PWM 정류기의 전류제어기)

  • Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.594-601
    • /
    • 2011
  • In this paper, a new current controller with the compensation of an unbalance and distorted grid voltages has been proposed. Generally, in the three-phase power system, single phase or nonlinear loads can be connected with the 3 phase linear load simultaneously on the same point of common coupling. Therefore, The source voltage unbalance and distortion problem can be occurred. Under these unbalance and distorted grid voltage conditions, the input current of 3 phase PWM rectifiers also have unbalance and distortion. In this paper, a current controller with the simple Model Reference Adaptive System based unbalance and distorted voltages observer is proposed to get a sinusoidal input current. The performance of the proposed algorithm is verified through the simulation and the experiment.