• Title/Summary/Keyword: Distance parameters

Search Result 1,976, Processing Time 0.025 seconds

Assessment of maximum liquefaction distance using soft computing approaches

  • Kishan Kumar;Pijush Samui;Shiva S. Choudhary
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.395-418
    • /
    • 2024
  • The epicentral region of earthquakes is typically where liquefaction-related damage takes place. To determine the maximum distance, such as maximum epicentral distance (Re), maximum fault distance (Rf), or maximum hypocentral distance (Rh), at which an earthquake can inflict damage, given its magnitude, this study, using a recently updated global liquefaction database, multiple ML models are built to predict the limiting distances (Re, Rf, or Rh) required for an earthquake of a given magnitude to cause damage. Four machine learning models LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory), CNN (Convolutional Neural Network), and XGB (Extreme Gradient Boosting) are developed using the Python programming language. All four proposed ML models performed better than empirical models for limiting distance assessment. Among these models, the XGB model outperformed all the models. In order to determine how well the suggested models can predict limiting distances, a number of statistical parameters have been studied. To compare the accuracy of the proposed models, rank analysis, error matrix, and Taylor diagram have been developed. The ML models proposed in this paper are more robust than other current models and may be used to assess the minimal energy of a liquefaction disaster caused by an earthquake or to estimate the maximum distance of a liquefied site provided an earthquake in rapid disaster mapping.

Relationship between hoof parameters and racing time in racehorses (경주마의 발굽지표와 경주기록과의 관계)

  • Um, Young-ho;Kim, Tae-wan;Yang, Il-suk
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.525-532
    • /
    • 1997
  • The hoof parameters - hoof angle, toe length, heel length, hoof width, hoof length, heel width, hoof circumference - of 1372 Thoroughbred racehorses in Seoul racecourse were measured. Each parameter was compared with the racing time. The parameters were as follows: fore hoof angle $50.1{\pm}0.09^{\circ}$, hind hoof angle $50.1{\pm}0.08^{\circ}$; fore toe fength $82.8{\pm}0.21mm$, hind toe length $88.8{\pm}0.23mm$; fore heel length $28.6{\pm}0.19mm$, hind heel length $24.5{\pm}0.19mm$; fore hoof width $130.9{\pm}0.30mm$, hind hoof width $125.7{\pm}0.28mm$; fore hoof length $133.3{\pm}0.22mm$, hind hoof length $28.1{\pm}0.22mm$; fore heel width $61.2{\pm}0.32mm$, hind heel width $67.9{\p}0.35mm$; fore hoof circumference $264.2{\pm}0.48mm$, hind hoof circumference $253.8{\pm}0.40mm$. Apart from the hoof angle, the hoof parameters increased in proportion to the body weight. The parameters of forelimbs affected the racing time more than those of hindlimbs. The correlation between hoof parameters and racing time was shown more in short-distance race (1000M) than in long-distance race(2200M). The parameters that had correlation with racing time were hoof width, hoof length, heel width of forelimbs and heel width of hindlimbs.

  • PDF

Distance Measurement Using a Single Camera with a Rotating Mirror

  • Kim Hyongsuk;Lin Chun-Shin;Song Jaehong;Chae Heesung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.542-551
    • /
    • 2005
  • A new distance measurement method with the use of a single camera and a rotating mirror is presented. A camera in front of a rotating mirror acquires a sequence of reflected images, from which distance information is extracted. The distance measurement is based on the idea that the corresponding pixel of an object point at a longer distance moves at a higher speed in a sequence of images in this type of system setting. Distance measurement based on such pixel movement is investigated. Like many other image-based techniques, this presented technique requires matching corresponding points in two images. To alleviate such difficulty, two kinds of techniques of image tracking through the sequence of images and the utilization of multiple sets of image frames are described. Precision improvement is possible and is one attractive merit. The presented approach with a rotating mirror is especially suitable for such multiple measurements. The imprecision caused by the physical limit could be improved through making several measurements and taking an average. In this paper, mathematics necessary for implementing the technique is derived and presented. Also, the error sensitivities of related parameters are analyzed. Experimental results using the real camera-mirror setup are reported.

Monocular Camera based Real-Time Object Detection and Distance Estimation Using Deep Learning (딥러닝을 활용한 단안 카메라 기반 실시간 물체 검출 및 거리 추정)

  • Kim, Hyunwoo;Park, Sanghyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.357-362
    • /
    • 2019
  • This paper proposes a model and train method that can real-time detect objects and distances estimation based on a monocular camera by applying deep learning. It used YOLOv2 model which is applied to autonomous or robot due to the fast image processing speed. We have changed and learned the loss function so that the YOLOv2 model can detect objects and distances at the same time. The YOLOv2 loss function added a term for learning bounding box values x, y, w, h, and distance values z as 클래스ification losses. In addition, the learning was carried out by multiplying the distance term with parameters for the balance of learning. we trained the model location, recognition by camera and distance data measured by lidar so that we enable the model to estimate distance and objects from a monocular camera, even when the vehicle is going up or down hill. To evaluate the performance of object detection and distance estimation, MAP (Mean Average Precision) and Adjust R square were used and performance was compared with previous research papers. In addition, we compared the original YOLOv2 model FPS (Frame Per Second) for speed measurement with FPS of our model.

Predicting Factors for the Distance from Skin to the Epidural Space with the Paramedian Epidural Approach (방정중접근법에 의한 경막외 천자시 피부로부터 경막외강까지의 거리의 예측인자)

  • Shim, Jae-Chol;Lee, Myoung-Eui;Kim, Dong-Won
    • The Korean Journal of Pain
    • /
    • v.9 no.2
    • /
    • pp.349-353
    • /
    • 1996
  • Background: Although the paramedian approach for epidural blockade is useful in some clinical situation, the parameters which are correlated with the distance from skin to the epidural space has not been established. Methods: We studied in 143 patients having elective continuous epidural blocks for relief of postoperative pain. All blocks were performed using paramedian approach with Tuohy needle in the lumbar (group 1, n=100) and thoracic (group 2, n=45) area. We measured the distance from skin to the epidural space, body weight, height, and the angle between the shaft of the needle and the skin. Data were analyzed by linear regression. The relationships between parameters identified by the F-test with a P value of less than 0.05 were considered statistically significant. Results: The mean distance from skin to the lumbar epidural space was $4.4{\pm}0.7$ cm. significant correlation between the body weight and the depth of lumbar epidural space ($\gamma$ value : 0.492) was noted with regression equation of depth(cm)=2.293+0.034${\times}$body weight (kg). Also the significant correlation between the ponderal index (PI) and the depth of lumbar epidural space ($\gamma$ value : 0.539) was noted with regression equation of depth(cm)=1.703+0.07${\times}$PI, The mean distance from skin to the thoracic epidural space was $5.2{\pm}0.7cm$ which did not correlated with other anatomic measurements. Conclusion: We found that PI and body weight are the suitable predictors of the depth of the lumbar epidural space, but not the thoracic epidural space.

  • PDF

Development of a Multiobjective Optimization Algorithm Using Data Distribution Characteristics (데이터 분포특성을 이용한 다목적함수 최적화 알고리즘 개발)

  • Hwang, In-Jin;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1793-1803
    • /
    • 2010
  • The weighting method and goal programming require weighting factors or target values to obtain a Pareto optimal solution. However, it is difficult to define these parameters, and a Pareto solution is not guaranteed when the choice of the parameters is incorrect. Recently, the Mahalanobis Taguchi System (MTS) has been introduced to minimize the Mahalanobis distance (MD). However, the MTS method cannot obtain a Pareto optimal solution. We propose a function called the skewed Mahalanobis distance (SMD) to obtain a Pareto optimal solution while retaining the advantages of the MD. The SMD is a new distance scale that multiplies the skewed value of a design point by the MD. The weighting factors are automatically reflected when the SMD is calculated. The SMD always gives a unique Pareto optimal solution. To verify the efficiency of the SMD, we present two numerical examples and show that the SMD can obtain a unique Pareto optimal solution without any additional information.

A Study on Combustion and Heat Transfer in Premixed Impinging Flames of Syngas(H2/CO)/Air Part II: Heat Transfer Characteristics (합성가스(H2/CO)/공기 예혼합 충돌화염의 연소 및 열전달 연구 Part II : 열전달 특성)

  • Sim, Keunseon;Jeong, Byeonggyu;Lee, Yongho;Lee, Keeman
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.59-71
    • /
    • 2014
  • An experimental study has been conducted to investigate the heat transfer characteristics of laminar syngas/air mixture with 10% hydrogen content impinging normally to a flat plate of cylinder. Effects of impinging distance, Reynolds number and equivalence ratio as major parameters on heat fluxes of stagnation point and radial direction were examined experimentally by the direct photos and data acquisitions from heat flux sensor. In this work, we could find the incurved flame behavior of line shaped inner top-flame in very closed distance between flat plate and burner exit, which has been not reported from general gas-fuels. There were 3 times of maximum and 2 times minimum heat flux of stagnation point with respect to the impinging distance for the investigation of Reynolds number and equivalence ratio effect. It was confirmed that the maximum heat flux of stagnation point in 1'st and 2'nd peaks increased with the increase of the Reynolds number due to the Nusselt number increment. There was a third maximum rise in the heat flux of stagnation point for larger separation distances and this phenomenon was different each for laminar and turbulent condition. The heat transfer characteristics between the stagnation and wall jet region in radial heat flux profiles was investigated by the averaged heat flux value. It has been observed that the values of averaged heat flux traced well with the characteristics of major parameters and the decreasing of averaged heat flux was coincided with the decreasing trend of adiabatic temperature in spite of the same flow condition, especially for impinging distance and equivalence ratio effects.

Path loss analysis of W-band using random forest (랜덤 포레스트를 이용한 W-대역의 경로손실 분석)

  • Cho, Yeongi;Kim, Kichul;Park, Juman;Choi, Jeong Won;Jo, Han-Shin
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.89-94
    • /
    • 2022
  • The W-band (75-110GHz) is a band that can utilize at least 10 times more bandwidth than the existing 5G band. Therefore, it is one of the bands suitable for future mobile communication that requires high speed and low latency, such as virtual and augmented reality. However, since the wavelength is short, it has a high path loss and is very sensitive to the atmospheric environment. Therefore, in order to develop a W-band communication system in the future, it is necessary to analyze the characteristics of path loss according to the channel environment. In this paper, to analyze the characteristics of the W-band path loss, the random forest technique was used, and the influence of the channel parameters according to the distance section was analyzed through the path loss data according to various channel environment parameters. As a result of the simulation, the distance has the highest influence on the path loss in the short distance, and the other channel environment factor is almost ignored. However, as the distance section became longer, the influence of distance decreased while the impact of clutter and rainfall increased.

Optimal Connection Algorithm of Two Kinds of Parts to Pairs using Hopfield Network (Hopfield Network를 이용한 이종 부품 결합의 최적화 알고리즘)

  • 오제휘;차영엽;고경용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.174-179
    • /
    • 1999
  • In this paper, we propose an optimal algorithm for finding the shortest connection of two kinds of parts to pairs. If total part numbers are of size N, then there are order 2ㆍ(N/2)$^{N}$ possible solutions, of which we want the one that minimizes the energy function. The appropriate dynamic rule and parameters used in network are proposed by a new energy function which is minimized when 3-constraints are satisfied. This dynamic nile has three important parameters, an enhancement variable connected to pairs, a normalized distance term and a time variable. The enhancement variable connected to pairs have to a perfect connection of two kinds of parts to pairs. The normalized distance term get rids of a unstable states caused by the change of total part numbers. And the time variable removes the un-optimal connection in the case of distance constraint and the wrong or not connection of two kinds of parts to pairs. First of all, we review the theoretical basis for Hopfield model and present a new energy function. Then, the connection matrix and the offset bias created by a new energy function and used in dynamic nile are shown. Finally, we show examples through computer simulation with 20, 30 and 40 parts and discuss the stability and feasibility of the resultant solutions for the proposed connection algorithm.m.

  • PDF

The Effects of Roll Misalignment Errors, Shooting Distance, and Vergence Condition of 3D Camera on 3D Visual Fatigue (시각피로 모형: 카메라의 회전오차, 촬영 거리, 수렴 조건이 입체 시각피로에 미치는 영향)

  • Li, Hyung-Chul O.;Park, JongJin;Kim, ShinWoo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.589-598
    • /
    • 2013
  • In order to understand 3D visual fatigue, it is necessary to examine the visual fatigue induced by camera parameters as well as that induced by a pre-existing 3D content. In the present study, we examined the effects of camera parameters, such as roll misalignment error, shooting distance and vergence condition on 3D visual fatigue and we modelled it. The results indicate that roll misalignment error, shooting distance and vergence condition affect 3D visual fatigue and the effect of roll misalignment error on 3D visual fatigue is evident specifically when screen disparity is relatively small.