• Title/Summary/Keyword: Distance between two wires

Search Result 14, Processing Time 0.019 seconds

A Novel Fault Location Scheme on Korean Electric Railway System Using the 9-Conductor Representation

  • Lee, Chang-Mu;Lee, Han-Sang;Yoon, Dong-Hee;Lee, Han-Min;Song, Ji-Young;Jang, Gil-Soo;Han, Byung-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.220-227
    • /
    • 2010
  • This paper presents a novel fault location scheme on Korean AC electric railway systems. On AC railway system, because of long distance, 40[km] or above, between two railway substations, a fault location technique is very important. Since the fault current flows through the catenary system, it must be modeled exactly to analyze the fault current magnitude and fault location. In this paper, suggesting the novel scheme of fault location, a 9-conductor modeling technique including boost wires and impedance bonds is introduced based on the characteristics of Korean AC electric railway. After obtaining a 9-conductor modeling, the railway system is constructed for computer simulation by using PSCAD/EMTDC. By case studies, we can verify superiority of a new fault location scheme and propose a powerful model for fault analysis on electric railway systems.

Parametric Modeling and Numerical Simulation of 3-D Woven Materials (3차원 엮임 재료의 파라메트릭 모델링 및 수치적 재료 특성 분석)

  • Sim, Kichan;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.331-338
    • /
    • 2020
  • In this study, the characteristic of a 3-D micro-woven material, which is one of the newly developed periodic open-cell structure, is analyzed through various computational simulations. To increase the accuracy of the numerical simulations, the distance between each directional wire is parameterized using six design variables, and its model geometry is precisely discretized using tetrahedron elements. Using the improved computational model, the material properties of the mechanical, thermal, and fluidic behavior are investigated using commercial software and compared with the previous experimental results. By changing the space between the x- and y-directional wires, a parametric test is performed to determine the tendency of the change in the material properties. In addition, the correlation between two different material properties is investigated using the Ashby chart. The result can further be used in determining the optimal pattern and wire spacing in 3-D micro-woven materials.

Turbulent Dispersion Behavior of a Jet issued into Thermally Stratified Cross Flows (II) (열적으로 성충화된 횡단류에 분류된 제트의 난류확산 거동 (II))

  • Kim, Sang Ki;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1434-1443
    • /
    • 1999
  • The turbulent fluctuations of temperature and two components of velocity have been measured with hot- and cold-wires in the Thermally Stratified Wind Tunnel(TSWT). Using the fin-tube heat exchanger type heaters and the neural network control algorithm, both stable ($dT/dz=109.4^{\circ}C$) and unstable ($dT/dz=-49.1^{\circ}C$) stratifications were realized. An ambient air jet was issued normally into the cross flow($U_{\infty}=1.0 m/s$) from a round nozzle(d = 6 mm) flushed at the bottom waII of the wind tunnel with the velocity ratio of $5.8(U_{jet}/U_{\infty})$. The characteristics of turbulent dispersion in the cross flow jet are found to change drastically depending on the thermal stratification. Especially, in the unstable condition, the vertical velocity fluctuation increases very rapidly at downstream of jet. The fluctuation velocity spectra and velocity-temperature cospectra along the jet centerline were obtained and compared. In the case of stable stratification, the heat flux cospectra changes Its sign from a certain point at the far field because of the restratification phenomenon. It is inferred that the main reason in the difference between the vertical heat fluxes is caused by the different length scales of the large eddy motions. The turbulent kinetic energy and scalar dissipation rates were estimated using partially non-isotropic and isotropic turbulent approximation. In the unstable case, the turbulent energy dissipation decreases more rapidly with the downstream distance than in the stable case.

Fabrication of $MgB_2$ Sheet by Powder Rolling Method (분말압연 공정에 의한 $MgB_2$ 판재 제조)

  • Chung, K.C.;Jeong, T.J.;Kim, T.H.;Ahn, S.T.;Park, Y.S.;Kim, D.H.;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.88-92
    • /
    • 2011
  • [ $MgB_2$ ]superconducting sheets have been fabricated using powder roll compaction method. Sheet-type $MgB_2$ bulk samples were successfully fabricated using the pre-reacted $MgB_2$ powders. In this work, $MgB_2$ powders were compacted by two rotating rolls and squeezed out as a form of $MgB_2$ sheets of ~1 mm thickness. The rolling speed of 0.3-0.7 rpm and the gap distance of 0.3-0.8 mm between the two rollers were carefully controlled to get a full compaction of the powders into bulk $MgB_2$ sheets. The densities of $MgB_2$ sheets were 1.98-2.05 g/$cm^3$, which is 75.44-77.99 % of the theoretical value of 2.63 g/$cm^3$. And the density comparison was made compared to those of typical $MgB_2$ bulks from uni-axial pressing and $MgB_2$ wires from Powder-In-Tube processing.