• Title/Summary/Keyword: Distance Relay

Search Result 238, Processing Time 0.024 seconds

Distance Relaying Algorithm Using a DFT-based Modified Phasor Estimation Method (DFT 기반의 개선된 페이저 연산 기법을 적용한 거리계전 알고리즘)

  • Lee, Dong-Gyu;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1360-1365
    • /
    • 2010
  • In this paper, we propose a distance relaying algorithm using a Discrete Fourier Transform (DFT)-based modified phasor estimation method to eliminate the adverse influence of exponentially decaying DC offsets. Most distance relays are based on estimating phasors of the voltage and current signals. A DFT is generally used to calculate the phasor of the fundamental frequency component in digital protective relays. However, the output of the DFT contains an error due to exponentially decaying DC offsets. For this reason, distance relays have a tendency to over-reach or under-reach in the presence of DC offset components in a fault current. Therefore, the decaying DC components should be taken into consideration when calculating the phasor of the fundamental frequency component of a relaying signal. The error due to DC offsets in a DFT is calculated and eliminated using the outputs of an even-sample-set DFT and an odd-sample-set DFT, so that the phasor of the fundamental component can be accurately estimated. The performance of the proposed algorithm is evaluated for a-phase to ground faults on a 345 kV, 50 km, simple overhead transmission line. The Electromagnetic Transient Program (EMTP) is used to generate fault signals. The evaluation results indicate that adopting the proposed algorithm in distance relays can effectively suppress the adverse influence of DC offsets.

A Study on a Distance Relaying Algorithm for Transmission Line Compensated with SSSC (SSSC로 보상된 송전 선로의 거리계전 알고리즘에 관한 연구)

  • Yang, J.W.;Nam, S.R.;Sohn, J.M.;Park, J.K.;Kang, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1401-1403
    • /
    • 1999
  • This paper presents a distance relaying algorithm for transmission line compensated with Static Synchronous Series Compensator (SSSC). The compensation voltage driven by SSSC is calculated from the line current measured at a relaying point Then the compensation voltage is subtracted from the voltage measured by the relay. We can apply conventional distance relaying algorithm with this subtracted voltage to locate a fault. The results of case studies using EMTP (Electro-Magnetic Transient Program) show the proposed algorithm has higher precision.

  • PDF

A Study on Adaptive Distance Protection of Double-circuit Line with Mutual Impedance and Fault Resistance (2회선 송전선로에서 상호임피던스와 고장저항을 고려한 거리계전기의 동작 특성 연구)

  • Lee, Won-Seok;Jung, Chang-Ho;Lee, Jun-Kyong;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.317-319
    • /
    • 2003
  • This paper describes an adaptive distance relay for double-circuit line protection with mutual impedance and fault resistance. Double-circuit lines have two operating condition; both lines of a double-circuit line are in operation and one line is switched-off and both ends of the line are grounded. For optimal distance protection, the trip region is calculated, which have respect to mutual impedance and fault resistance.

  • PDF

A Study of TCP LINK based Real-Time Secure Communication Research in the Ocean (해상에서 실시간 TCP 링크관절 보안통신 연구)

  • Yoo, Jaewon;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.250-253
    • /
    • 2014
  • Due to limited resource, marine communication is severely limited when compared to communications in land. Radio relay facilities, etc. based on a wired network through a long distance communication is possible. In addition, the aircraft is in the air, the ground-based network service based on long-range straight-line distance and elevation (LOS: Line of Sight) communications. On the other hand, the distance in a straight line to the sea, the sea level because communication is limited or through satellite, underwater communications relay equipment installed in the communication scheme has been investigated.. In this paper, using TCP-based real-time joint maritime security communication links were studied. Harsh marine environment, real-time communication that can provide secure communications and propose a LINK joint. In this study, more secure, and convenient communications at sea, a plan was presented to you.

  • PDF

Design and Implementation of Standby Power Control Module based on Low Power Active RFID (저 전력 능동형 RFID 기반 대기 전력 제어 모듈 설계 및 구현)

  • Jang, Ji-Woong;Lee, Kyung-Hoon;Kim, Young-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.491-497
    • /
    • 2015
  • In this paper a method of design and Implementation of RFID based control system for reducing standby power consumption at the power outlet is described. The system is composed of a RF controlled power outlet having relay and an active RFID tag communicating with the RF reader module controlling the relay. When the tag carried by human approaches to the RF reader the reader recognizes the tag and switch off the relay based on the RSSI level measurement. A low power packet prediction algorithm has been used to decrease the DC power consumption at both the tag and the RF reader. The result of experiment shows that successful operation of the relay control has been obtained while low power operation of the tag and the reader is achieved using above algorithm. Also setting the distance between the reader and the tag by controlling transmission power of the tag and adjusting the duty cycle of the packet waiting time when the reader is in idle state allows us to reduce DC power consumption at both the reader and the tag.

Interference Aware Downlink Channel Allocation Algorithm to Improve Throughput on OFDMA Cellular Multihop Networks with Random Topology (임의의 토폴로지를 갖는 OFDMA 다중홉 셀룰러 네트워크의 하향링크 간섭 완화를 위한 채널 할당 방법)

  • Lim, Sunggook;Lee, Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • Upcoming cellular networks such as LTE-advanced and IEEE 802.16m are enhanced by relay stations to support high data rate multimedia services and minimize the shadow zone with low cost. Enhancing the relay stations, however, divides the multihop cellular network into smaller microcells and the distance between microcells is closer, which intends large intra-cell and inter-cell interference. Especially the access link on downlink in the OFDMA cellular network is the throughput bottleneck due to the severe interference caused by base stations and relay stations transmitting large data to mobile stations simultaneously. In this paper, we present interference aware channel allocation algorithm to avoid severe interference on multihop cellular networks with random topology. Proposed algorithm increases SINR(signal to interference plus noise ratio) and decreases number of required control messages for channel allocation, so that increases overall throughput on the networks.

An Adaptive Relay Node Selection Scheme for Alert Message Propagation in Inter-vehicle Communication (차량간 통신에서 긴급 메시지 전파를 위한 적응적 릴레이 노드 선정기법)

  • Kim, Tae-Hwan;Kim, Hie-Cheol;Hong, Won-Kee
    • The KIPS Transactions:PartC
    • /
    • v.14C no.7
    • /
    • pp.571-582
    • /
    • 2007
  • Vehicular ad-hoc networks is temporarily established through inter-vehicle communication without any additional infrastructure aids. It requires a immediate message propagation because it mainly deals with critical traffic information such as traffic accidents. The distance-based broadcast scheme is one of the representative broadcast schemes for vehicular ad-hoc network. In this scheme, a node to disseminate messages is selected based on a distance from a source node. However, a message propagation delay will be increased if the relay nodes are not placed at the border of transmission range of the source node. In particular, when the node density is low, the message propagation delay is getting longer. In this paper, we propose a time-window reservation based relay node selection scheme. A node receiving the alert message from the source node has its time-window and randomly selects its waiting time within the given time-window range. A proportional time period of the given time-window is reserved in order to reduce the message propagation delay. The experimental results show that the proposed scheme has shorter message propagation delay than the distance-based broadcast scheme irrespective of node density in VANET. In particular, when the node density is low, the proposed scheme shows about 26% shorter delay and about 46% better performance in terms of compound metric, which is a function of propagation latency and network traffic.

A New Incentive Based Bandwidth Allocation Scheme For Cooperative Non-Orthogonal Multiple Access (협력 비직교 다중 접속 네트워크에서 새로운 인센티브 기반 주파수 할당 기법)

  • Kim, Jong Won;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.6
    • /
    • pp.173-180
    • /
    • 2021
  • Non Orthogonal Multiple Access (NOMA) is a technology to guarantee the explosively increased Quality of Service(QoS) of users in 5G networks. NOMA can remove the frequent orthogonality in Orthogonal Multiple Access (OMA) while allocating the power differentially to classify user signals. NOMA can guarantee higher communication speed than OMA. However, the NOMA has one disadvantage; it consumes a more energy power when the distance increases. To solve this problem, relay nodes are employed to implement the cooperative NOMA control idea. In a cooperative NOMA network, relay node participations for cooperative communications are essential. In this paper, a new bandwidth allocation scheme is proposed for cooperative NOMA platform. By employing the idea of Vickrey-Clarke-Groves (VCG) mechanism, the proposed scheme can effectively prevent selfishly actions of relay nodes in the cooperative NOMA network. Especially, base stations can pay incentives to relay nodes as much as the contributes of relay nodes. Therefore, the proposed scheme can control the selfish behavior of relay nodes to improve the overall system performance.

SHD Digital Cinema Distribution over a Fast Long-Distance Network

  • Takahiro Yamaguchi;Daisuke Shirai;Mitsuru Nomura;Kazuhiro Shirakawa;Tatsuya Fujii;Tetsuro Fujii;Kim, io-Oguchi
    • Journal of Broadcast Engineering
    • /
    • v.9 no.2
    • /
    • pp.119-130
    • /
    • 2004
  • We have developed a prototype super-high-definition (SHD) digital cinema distribution system that can store, transmit, and display eight-million-pixel motion pictures that have the image quality of a 35-mm film movie. The system contains a movie server, a real-time decoder, and an SHB projector. Using a Gigabit Ethernet link and TCP/IP, the server transmits JPEG2000 compressed motion picture data streams to the decoder at transmission speeds as high as 300 Mbps. The received data streams are decompressed by the decoder, and then projected onto a screen via the projector. By using an enlarged TCP window, multiple TCP streams, and a shaping function to control the data transmission quantity, we achieved real-time streaming of SHD movie data at about 300 Mbps between Chicago and Los Angeles, a distance of more than 3000 km. We also improved the decoder performance to show movies with Image qualities of 450 Mbps or higher. Since UDP is more suitable than TCP for fast long-distance streaming, we have developed an SHD digital cinema UDP relay system, in which UDP is used for transmission over a fast long-distance network. By using four pairs of server-side-proxy and decoder-side-proxy, 450-Mbps movie data streams could be transmitted.

Clustering Algorithm Considering Sensor Node Distribution in Wireless Sensor Networks

  • Yu, Boseon;Choi, Wonik;Lee, Taikjin;Kim, Hyunduk
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.926-940
    • /
    • 2018
  • In clustering-based approaches, cluster heads closer to the sink are usually burdened with much more relay traffic and thus, tend to die early. To address this problem, distance-aware clustering approaches, such as energy-efficient unequal clustering (EEUC), that adjust the cluster size according to the distance between the sink and each cluster head have been proposed. However, the network lifetime of such approaches is highly dependent on the distribution of the sensor nodes, because, in randomly distributed sensor networks, the approaches do not guarantee that the cluster energy consumption will be proportional to the cluster size. To address this problem, we propose a novel approach called CACD (Clustering Algorithm Considering node Distribution), which is not only distance-aware but also node density-aware approach. In CACD, clusters are allowed to have limited member nodes, which are determined by the distance between the sink and the cluster head. Simulation results show that CACD is 20%-50% more energy-efficient than previous work under various operational conditions considering the network lifetime.