• 제목/요약/키워드: Distance Estimation

검색결과 1,190건 처리시간 0.038초

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor

  • Hyun, Jeonghoon;Eun, Youngho;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.263-277
    • /
    • 2018
  • This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.

비동기식 FDD에서 Two-way ToA를 통한 상대거리 측정에 관한 연구 (A Study on relative distance estimation for asynchronous FDD using Two-way ToA)

  • 송영환;박재수;신영준;윤창배
    • 한국전자통신학회논문지
    • /
    • 제11권12호
    • /
    • pp.1175-1186
    • /
    • 2016
  • 무선 통신 환경에서 위치기반서비스를 이용하기 위해서는 상대거리 측정기술이 중요하다. 본 논문에서는 비동기식 주파수 다중 분할(: FDD) 방식을 사용하는 통신환경에서 위치측정을 위한 내 외부 인프라 사용이 불가할 때, 물리계층의 프레임 구조를 활용한 상대거리 측정을 위한 방안을 제시한다. 제안된 방식은 연속적인 거리측정이 가능하며, 실험을 통해 평균 10m 이하의 측정 정확도를 확인하였다.

초음파 무선 센서노드를 이용한 실시간 위치 추적 시스템 (Real-time Location Tracking System Using Ultrasonic Wireless Sensor Nodes)

  • 박종현;추영열
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.711-717
    • /
    • 2007
  • Location information will become increasingly important for future Pervasive Computing applications. Location tracking system of a moving device can be classified into two types of architectures: an active mobile architecture and a passive mobile architecture. In the former, a mobile device actively transmits signals for estimating distances to listeners. In the latter, a mobile device listens signals from beacons passively. Although the passive architecture such as Cricket location system is inexpensive, easy to set up, and safe, it is less precise than the active one. In this paper, we present a passive location system using Cricket Mote sensors which use RF and ultrasonic signals to estimate distances. In order to improve accuracy of the passive system, the transmission speed of ultrasound was compensated according to air temperature at the moment. Upper and lower bounds of a distance estimation were set up through measuring minimum and maximum distances that ultrasonic signal can reach to. Distance estimations beyond the upper and the lower bounds were filtered off as errors in our scheme. With collecting distance estimation data at various locations and comparing each distance estimation with real distance respectively, we proposed an equation to compensate the deviation at each point. Equations for proposed algorithm were derived to calculate relative coordinates of a moving device. At indoor and outdoor tests, average location error and average location tracking period were 3.5 cm and 0.5 second, respectively, which outperformed Cricket location system of MIT.

Prediction of Land Use/Land Cover Change in Forest Area Using a Probability Density Function

  • Park, Jinwoo;Park, Jeongmook;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • 제33권4호
    • /
    • pp.305-314
    • /
    • 2017
  • This study aimed to predict changes in forest area using a probability density function, in order to promote effective forest management in the area north of the civilian control line (known as the Minbuk area) in Korea. Time series analysis (2010 and 2016) of forest area using land cover maps and accessibility expressed by distance covariates (distance from buildings, roads, and civilian control line) was applied to a probability density function. In order to estimate the probability density function, mean and variance were calculated using three methods: area weight (AW), area rate weight (ARW), and sample area change rate weight (SRW). Forest area increases in regions with lower accessibility (i.e., greater distance) from buildings and roads, but no relationship with accessibility from the civilian control line was found. Estimation of forest area change using different distance covariates shows that SRW using distance from buildings provides the most accurate estimation, with around 0.98-fold difference from actual forest area change, and performs well in a Chi-Square test. Furthermore, estimation of forest area until 2028 using SRW and distance from buildings most closely replicates patterns of actual forest area changes, suggesting that estimation of future change could be possible using this method. The method allows investigation of the current status of land cover in the Minbuk area, as well as predictions of future changes in forest area that could be utilized in forest management planning and policymaking in the northern area.

서치코일 내장형 SRM의 정지시 회전자 위치 추정 기법 (The Rotor Position Estimation Techniques of an SRM with Built-in Search Coils at Standstill)

  • 양형열;신덕식;임영철
    • 전력전자학회논문지
    • /
    • 제10권1호
    • /
    • pp.45-51
    • /
    • 2005
  • 본 논문에서는 서치코일이 장착된 SRM(Switched Reluctance Motor)의 정지시 회전자 위치를 추정하는 방법을 비교하여 제시하였다. 서치코일이 장착된 SRM은 초기에 정지상태이므로 서치코일에서 유기기전력이 발생하지 않는다. 따라서 정지상태에서 회전자의 위치를 검출하기 위한 방법이 필요하게 된다. 본 논문에서는 유클리디안 제곱거리, 퍼지, 신경망 등 세 가지 방법을 이용하여 회전자의 위치 추정을 위한 시뮬레이션을 실행하였고 그 결과를 비교하였다. 또한 시뮬레이션 결과가 우수한 유클리디안 제곱거리를 이용하여 회전자 위치 추정을 위한 실험을 실시하여 본 논문에서 제안한 방법의 타당성을 검증하였다.

오차확률분포 사이 유클리드 거리의 새로운 기울기 추정법 (A New Gradient Estimation of Euclidean Distance between Error Distributions)

  • 김남용
    • 전자공학회논문지
    • /
    • 제51권8호
    • /
    • pp.126-135
    • /
    • 2014
  • 오차 신호의 확률분포 사이의 유클리드 거리 (Euclidean distance between error probability density functions, EDEP)는 충격성 잡음 환경의 적응 신호 처리를 위한 성능 지수로 사용되었다. 이 EDEP 알고리듬의 단점 중의 하나로 각 반복 시간마다 수행하는 이중적분에 의해 과다한 계산상의 복잡성이 있다. 이 논문에서는 EDEP 와 그 기울기 계산에서 계산상의 부담을 줄일 수 있는 반복적 추정 방법을 제안하였다. 데이터 블록 크기 N에 대하여, 기존의 추정 방식에 의한 EDEP와 그 기울기 계산량은 $O(N^2)$인 반면, 제안한 방식의 계산량은 O(N)이다. 성능 시험에서 제안한 방식의 EDEP와 그 기울기는 정상상태에서 기존의 블록 처리 방식과 동일한 추정결과를 나타냈다. 이러한 시뮬레이션 결과로부터, 제안한 방식이 실제 적응신호처리 분야에서 효과적인 방식임을 알 수 있다.

Localization Algorithm for Wireless Sensor Networks Based on Modified Distance Estimation

  • Zhao, Liquan;Zhang, Kexin
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1158-1168
    • /
    • 2020
  • The distance vector-hop wireless sensor node location method is one of typical range-free location methods. In distance vector-hop location method, if a wireless node A can directly communicate with wireless sensor network nodes B and C at its communication range, the hop count from wireless sensor nodes A to B is considered to be the same as that form wireless sensor nodes A to C. However, the real distance between wireless sensor nodes A and B may be dissimilar to that between wireless sensor nodes A and C. Therefore, there may be a discrepancy between the real distance and the estimated hop count distance, and this will affect wireless sensor node location error of distance vector-hop method. To overcome this problem, it proposes a wireless sensor network node location method by modifying the method of distance estimation in the distance vector-hop method. Firstly, we set three different communication powers for each node. Different hop counts correspond to different communication powers; and so this makes the corresponding relationship between the real distance and hop count more accurate, and also reduces the distance error between the real and estimated distance in wireless sensor network. Secondly, distance difference between the estimated distance between wireless sensor network anchor nodes and their corresponding real distance is computed. The average value of distance errors that is computed in the second step is used to modify the estimated distance from the wireless sensor network anchor node to the unknown sensor node. The improved node location method has smaller node location error than the distance vector-hop algorithm and other improved location methods, which is proved by simulations.

금속파편 충격 신호분석을 위한 굽힘파의 거리 감쇠 (Distance Attenuation of Bending Wave to Analyze the Loose Parts Impact Signal)

  • 이정한;박진호
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.594-601
    • /
    • 2016
  • Mass estimation analysis of loose-parts in pressure vessel is necessary for the structural integrity assessment of pressure boundary in nuclear power plants. Mass of loose-parts can be generally estimated from the peak values and the center frequency of impact signals. Magnitude of impact signals is, however, inevitably attenuated according to the traveling distance of the signals and depending on the frequencies. Attenuation rate must be therefore carefully compensated for the precise estimation of loose-part mass. This paper proposes a new compensation method for the attenuation rate based on Bessel function instead of Hankel function in conventional method which has a limitation of usage in near the impact location. It was verified that the suggested compensating equation based on the Bessel function can be applied to the attenuation rate calculation without any limitation.

최단거리 최소제곱법을 이용한 측정점군으로부터의 곡면 자동탐색 (Surface Type Detection and Parameter Estimation in Point Cloud by Using Orthogonal Distance Fitting)

  • 안성준
    • 한국CDE학회논문집
    • /
    • 제14권1호
    • /
    • pp.10-17
    • /
    • 2009
  • Surface detection and parameter estimation in point cloud is a relevant subject in CAD/CAM, reverse engineering, computer vision, coordinate metrology and digital factory. In this paper we present a software for a fully automatic surface detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting, which work interactively. Our newly developed algorithms for orthogonal distance fitting(ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. We demonstrate the performance of the software on a variety of point clouds generated by laser radar, computer tomography, and stripe-projection method.

대공무기체계 표적거리예측 알고리즘 성능향상에 관한 연구 (A Study on Performance Improvement of Distance Estimation Algorithm for Anti-Aircraft Weapon System)

  • 서승범;김영길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.235-237
    • /
    • 2017
  • 전투무선망을 통해 방공C2A 체계로부터 전송되는 표적거리는 전투무성망의 여러 가지 특성으로 인해 오차가 발생한다. 본 논문에서는 칼만필터를 이용한 거리추정 알고리즘의 성능을 향상 시켜 오차를 최소화할 수 있는 방법을 제안한다.

  • PDF